These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
90 related articles for article (PubMed ID: 23932357)
1. Increase in stearidonic acid by increasing the supply of histidine to oleaginous Saccharomyces cerevisiae. Kimura K; Kamisaka Y; Uemura H; Yamaoka M J Biosci Bioeng; 2014 Jan; 117(1):53-6. PubMed ID: 23932357 [TBL] [Abstract][Full Text] [Related]
2. DGA1 (diacylglycerol acyltransferase gene) overexpression and leucine biosynthesis significantly increase lipid accumulation in the Deltasnf2 disruptant of Saccharomyces cerevisiae. Kamisaka Y; Tomita N; Kimura K; Kainou K; Uemura H Biochem J; 2007 Nov; 408(1):61-8. PubMed ID: 17688423 [TBL] [Abstract][Full Text] [Related]
3. Improvement of Stearidonic acid production in Oleaginous Saccharomyces cerevisiae. Kimura K; Tomita N; Uemura H; Aki T; Ono K; Kamisaka Y Biosci Biotechnol Biochem; 2009 Jun; 73(6):1447-9. PubMed ID: 19502753 [TBL] [Abstract][Full Text] [Related]
4. Activation of diacylglycerol acyltransferase expressed in Saccharomyces cerevisiae: overexpression of Dga1p lacking the N-terminal region in the Deltasnf2 disruptant produces a significant increase in its enzyme activity. Kamisaka Y; Kimura K; Uemura H; Shibakami M Appl Microbiol Biotechnol; 2010 Sep; 88(1):105-15. PubMed ID: 20567816 [TBL] [Abstract][Full Text] [Related]
5. Overexpression of the active diacylglycerol acyltransferase variant transforms Saccharomyces cerevisiae into an oleaginous yeast. Kamisaka Y; Kimura K; Uemura H; Yamaoka M Appl Microbiol Biotechnol; 2013 Aug; 97(16):7345-55. PubMed ID: 23613035 [TBL] [Abstract][Full Text] [Related]
6. Addition of methionine and low cultivation temperatures increase palmitoleic acid production by engineered Saccharomyces cerevisiae. Kamisaka Y; Kimura K; Uemura H; Yamaoka M Appl Microbiol Biotechnol; 2015 Jan; 99(1):201-10. PubMed ID: 25267159 [TBL] [Abstract][Full Text] [Related]
7. Modulation of gluconeogenesis and lipid production in an engineered oleaginous Saccharomyces cerevisiae transformant. Kamisaka Y; Kimura K; Uemura H; Ledesma-Amaro R Appl Microbiol Biotechnol; 2016 Sep; 100(18):8147-57. PubMed ID: 27311564 [TBL] [Abstract][Full Text] [Related]
8. Identification of genes affecting lipid content using transposon mutagenesis in Saccharomyces cerevisiae. Kamisaka Y; Noda N; Tomita N; Kimura K; Kodaki T; Hosaka K Biosci Biotechnol Biochem; 2006 Mar; 70(3):646-53. PubMed ID: 16556980 [TBL] [Abstract][Full Text] [Related]
9. Molecular cloning and overexpression of DGA1, an acyl-CoA-dependent diacylglycerol acyltransferase, in the oleaginous yeast Rhodosporidiobolus fluvialis DMKU-RK253. Polburee P; Ohashi T; Tsai YY; Sumyai T; Lertwattanasakul N; Limtong S; Fujiyama K Microbiology (Reading); 2018 Jan; 164(1):1-10. PubMed ID: 29182511 [TBL] [Abstract][Full Text] [Related]
10. Dissecting the cis and trans elements that regulate adjacent-gene coregulation in Saccharomyces cerevisiae. Arnone JT; Arace JR; Soorneedi AR; Citino TT; Kamitaki TL; McAlear MA Eukaryot Cell; 2014 Jun; 13(6):738-48. PubMed ID: 24706020 [TBL] [Abstract][Full Text] [Related]
11. Production of polyunsaturated fatty acids in yeast Saccharomyces cerevisiae and its relation to alkaline pH tolerance. Yazawa H; Iwahashi H; Kamisaka Y; Kimura K; Uemura H Yeast; 2009 Mar; 26(3):167-84. PubMed ID: 19243079 [TBL] [Abstract][Full Text] [Related]
12. Engineering high-level production of fatty alcohols by Saccharomyces cerevisiae from lignocellulosic feedstocks. d'Espaux L; Ghosh A; Runguphan W; Wehrs M; Xu F; Konzock O; Dev I; Nhan M; Gin J; Reider Apel A; Petzold CJ; Singh S; Simmons BA; Mukhopadhyay A; García Martín H; Keasling JD Metab Eng; 2017 Jul; 42():115-125. PubMed ID: 28606738 [TBL] [Abstract][Full Text] [Related]
13. Genetic engineering to alter carbon flux for various higher alcohol productions by Saccharomyces cerevisiae for Chinese Baijiu fermentation. Li W; Chen SJ; Wang JH; Zhang CY; Shi Y; Guo XW; Chen YF; Xiao DG Appl Microbiol Biotechnol; 2018 Feb; 102(4):1783-1795. PubMed ID: 29305698 [TBL] [Abstract][Full Text] [Related]
14. Improved squalene production through increasing lipid contents in Saccharomyces cerevisiae. Wei LJ; Kwak S; Liu JJ; Lane S; Hua Q; Kweon DH; Jin YS Biotechnol Bioeng; 2018 Jul; 115(7):1793-1800. PubMed ID: 29573412 [TBL] [Abstract][Full Text] [Related]
15. Mitochondrial Compartmentalization Confers Specificity to the 2-Ketoacid Recursive Pathway: Increasing Isopentanol Production in Hammer SK; Zhang Y; Avalos JL ACS Synth Biol; 2020 Mar; 9(3):546-555. PubMed ID: 32049515 [TBL] [Abstract][Full Text] [Related]
16. Molecular analysis of ∆6 desaturase and ∆6 elongase from Conidiobolus obscurus in the biosynthesis of eicosatetraenoic acid, a ω3 fatty acid with nutraceutical potentials. Tan L; Meesapyodsuk D; Qiu X Appl Microbiol Biotechnol; 2011 Apr; 90(2):591-601. PubMed ID: 21210105 [TBL] [Abstract][Full Text] [Related]
17. Diacylglycerol acyltransferase 2 of Mortierella alpina with specificity on long-chain polyunsaturated fatty acids: A potential tool for reconstituting lipids with nutritional value. Jeennor S; Veerana M; Anantayanon J; Panchanawaporn S; Chutrakul C; Laoteng K J Biotechnol; 2017 Dec; 263():45-51. PubMed ID: 29050877 [TBL] [Abstract][Full Text] [Related]
18. Enhancement of lipid productivity in oleaginous Colletotrichum fungus through genetic transformation using the yeast CtDGAT2b gene under model-optimized growth condition. Dey P; Mall N; Chattopadhyay A; Chakraborty M; Maiti MK PLoS One; 2014; 9(11):e111253. PubMed ID: 25375973 [TBL] [Abstract][Full Text] [Related]
19. Accelerated triacylglycerol production and altered fatty acid composition in oleaginous microalga Neochloris oleoabundans by overexpression of diacylglycerol acyltransferase 2. Klaitong P; Fa-Aroonsawat S; Chungjatupornchai W Microb Cell Fact; 2017 Apr; 16(1):61. PubMed ID: 28403867 [TBL] [Abstract][Full Text] [Related]
20. Genetic interaction between the ero1-1 and leu2 mutations in Saccharomyces cerevisiae. López-Mirabal HR; Winther JR; Kielland-Brandt MC Biosci Biotechnol Biochem; 2007 Dec; 71(12):2934-42. PubMed ID: 18071269 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]