BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 23933048)

  • 1. Strong and tough mineralized PLGA nanofibers for tendon-to-bone scaffolds.
    Kolluru PV; Lipner J; Liu W; Xia Y; Thomopoulos S; Genin GM; Chasiotis I
    Acta Biomater; 2013 Dec; 9(12):9442-50. PubMed ID: 23933048
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toughening of fibrous scaffolds by mobile mineral deposits.
    Lipner J; Boyle JJ; Xia Y; Birman V; Genin GM; Thomopoulos S
    Acta Biomater; 2017 Aug; 58():492-501. PubMed ID: 28532898
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The mechanics of PLGA nanofiber scaffolds with biomimetic gradients in mineral for tendon-to-bone repair.
    Lipner J; Liu W; Liu Y; Boyle J; Genin GM; Xia Y; Thomopoulos S
    J Mech Behav Biomed Mater; 2014 Dec; 40():59-68. PubMed ID: 25194525
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D imaging of cell interactions with electrospun PLGA nanofiber membranes for bone regeneration.
    Stachewicz U; Qiao T; Rawlinson SCF; Almeida FV; Li WQ; Cattell M; Barber AH
    Acta Biomater; 2015 Nov; 27():88-100. PubMed ID: 26348143
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation, characterization and in vitro analysis of novel structured nanofibrous scaffolds for bone tissue engineering.
    Wang J; Yu X
    Acta Biomater; 2010 Aug; 6(8):3004-12. PubMed ID: 20144749
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanofibrous poly(lactide-co-glycolide) membranes loaded with diamond nanoparticles as promising substrates for bone tissue engineering.
    Parizek M; Douglas TE; Novotna K; Kromka A; Brady MA; Renzing A; Voss E; Jarosova M; Palatinus L; Tesarek P; Ryparova P; Lisa V; dos Santos AM; Warnke PH; Bacakova L
    Int J Nanomedicine; 2012; 7():1931-51. PubMed ID: 22619532
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of mineralized electrospun PLGA and PLGA/gelatin nanofibers and their potential in bone tissue engineering.
    Meng ZX; Li HF; Sun ZZ; Zheng W; Zheng YF
    Mater Sci Eng C Mater Biol Appl; 2013 Mar; 33(2):699-706. PubMed ID: 25427476
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Morphological effects of HA on the cell compatibility of electrospun HA/PLGA composite nanofiber scaffolds.
    Haider A; Gupta KC; Kang IK
    Biomed Res Int; 2014; 2014():308306. PubMed ID: 24719853
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Poly(lactide-co-glycolide)/hydroxyapatite nanofibrous scaffolds fabricated by electrospinning for bone tissue engineering.
    Lao L; Wang Y; Zhu Y; Zhang Y; Gao C
    J Mater Sci Mater Med; 2011 Aug; 22(8):1873-84. PubMed ID: 21681656
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomineralized poly (l-lactic-co-glycolic acid)-tussah silk fibroin nanofiber fabric with hierarchical architecture as a scaffold for bone tissue engineering.
    Gao Y; Shao W; Qian W; He J; Zhou Y; Qi K; Wang L; Cui S; Wang R
    Mater Sci Eng C Mater Biol Appl; 2018 Mar; 84():195-207. PubMed ID: 29519429
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of uniaxially aligned 3D electrospun scaffolds for neural regeneration.
    Subramanian A; Krishnan UM; Sethuraman S
    Biomed Mater; 2011 Apr; 6(2):025004. PubMed ID: 21301055
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elastin-PLGA hybrid electrospun nanofiber scaffolds for salivary epithelial cell self-organization and polarization.
    Foraida ZI; Kamaldinov T; Nelson DA; Larsen M; Castracane J
    Acta Biomater; 2017 Oct; 62():116-127. PubMed ID: 28801269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Promoting tendon to bone integration using graphene oxide-doped electrospun poly(lactic-co-glycolic acid) nanofibrous membrane.
    Su W; Wang Z; Jiang J; Liu X; Zhao J; Zhang Z
    Int J Nanomedicine; 2019; 14():1835-1847. PubMed ID: 30880983
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced bone formation in electrospun poly(L-lactic-co-glycolic acid)-tussah silk fibroin ultrafine nanofiber scaffolds incorporated with graphene oxide.
    Shao W; He J; Sang F; Wang Q; Chen L; Cui S; Ding B
    Mater Sci Eng C Mater Biol Appl; 2016 May; 62():823-34. PubMed ID: 26952489
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The construction and investigation of PLGA artificial bone by biomimetic mineralization.
    Zhao M; Zheng Q; Wang J; Wang Y; Hao J
    J Huazhong Univ Sci Technolog Med Sci; 2005; 25(6):687-9. PubMed ID: 16696326
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrospun PLGA-silk fibroin-collagen nanofibrous scaffolds for nerve tissue engineering.
    Wang G; Hu X; Lin W; Dong C; Wu H
    In Vitro Cell Dev Biol Anim; 2011 Mar; 47(3):234-40. PubMed ID: 21181450
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing the stiffness of electrospun nanofiber scaffolds with a controlled surface coating and mineralization.
    Liu W; Yeh YC; Lipner J; Xie J; Sung HW; Thomopoulos S; Xia Y
    Langmuir; 2011 Aug; 27(15):9088-93. PubMed ID: 21710996
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generation of electrospun nanofibers with controllable degrees of crimping through a simple, plasticizer-based treatment.
    Liu W; Lipner J; Moran CH; Feng L; Li X; Thomopoulos S; Xia Y
    Adv Mater; 2015 Apr; 27(16):2583-8. PubMed ID: 25758008
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characteristic Evaluation of Recombinant MiSp/Poly(lactic-
    Sun Y; Jia X; Meng Q
    Int J Mol Sci; 2023 Jan; 24(2):. PubMed ID: 36674734
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Incorporation of mesoporous silica nanoparticles into random electrospun PLGA and PLGA/gelatin nanofibrous scaffolds enhances mechanical and cell proliferation properties.
    Mehrasa M; Asadollahi MA; Nasri-Nasrabadi B; Ghaedi K; Salehi H; Dolatshahi-Pirouz A; Arpanaei A
    Mater Sci Eng C Mater Biol Appl; 2016 Sep; 66():25-32. PubMed ID: 27207035
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.