These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Replicating receptive fields of simple and complex cells in primary visual cortex in a neuronal network model with temporal and population sparseness and reliability. Tanaka T; Aoyagi T; Kaneko T Neural Comput; 2012 Oct; 24(10):2700-25. PubMed ID: 22845820 [TBL] [Abstract][Full Text] [Related]
3. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Olshausen BA; Field DJ Nature; 1996 Jun; 381(6583):607-9. PubMed ID: 8637596 [TBL] [Abstract][Full Text] [Related]
7. Quadratic forms in natural images. Hashimoto W Network; 2003 Nov; 14(4):765-88. PubMed ID: 14653502 [TBL] [Abstract][Full Text] [Related]
8. Is sparse and distributed the coding goal of simple cells? Zhao L Biol Cybern; 2004 Dec; 91(6):408-16. PubMed ID: 15597179 [TBL] [Abstract][Full Text] [Related]
9. How are complex cell properties adapted to the statistics of natural stimuli? Körding KP; Kayser C; Einhäuser W; König P J Neurophysiol; 2004 Jan; 91(1):206-12. PubMed ID: 12904330 [TBL] [Abstract][Full Text] [Related]
10. A network that uses few active neurones to code visual input predicts the diverse shapes of cortical receptive fields. Rehn M; Sommer FT J Comput Neurosci; 2007 Apr; 22(2):135-46. PubMed ID: 17053994 [TBL] [Abstract][Full Text] [Related]
11. Receptive field self-organization in a model of the fine structure in v1 cortical columns. Lücke J Neural Comput; 2009 Oct; 21(10):2805-45. PubMed ID: 19548804 [TBL] [Abstract][Full Text] [Related]
12. BOLD responses in human V1 to local structure in natural scenes: Implications for theories of visual coding. Rieger JW; Gegenfurtner KR; Schalk F; Koechy N; Heinze HJ; Grueschow M J Vis; 2013 Feb; 13(2):19. PubMed ID: 23404159 [TBL] [Abstract][Full Text] [Related]
13. Spatial scene representations formed by self-organizing learning in a hippocampal extension of the ventral visual system. Rolls ET; Tromans JM; Stringer SM Eur J Neurosci; 2008 Nov; 28(10):2116-27. PubMed ID: 19046392 [TBL] [Abstract][Full Text] [Related]
14. Modification of visual cortical receptive field induced by natural stimuli. Zhu Y; Yao H Cereb Cortex; 2013 Aug; 23(8):1923-32. PubMed ID: 22735159 [TBL] [Abstract][Full Text] [Related]
15. Dynamic response properties of visual neurons and context-dependent surround effects on receptive fields in the tectum of the salamander Plethodon shermani. Schuelert N; Dicke U Neuroscience; 2005; 134(2):617-32. PubMed ID: 15975725 [TBL] [Abstract][Full Text] [Related]
16. Statistical models of natural images and cortical visual representation. Hyvärinen A Top Cogn Sci; 2010 Apr; 2(2):251-64. PubMed ID: 25163788 [TBL] [Abstract][Full Text] [Related]
17. Lateral spike conduction velocity in the visual cortex affects spatial range of synchronization and receptive field size without visual experience: a learning model with spiking neurons. Saam M; Eckhorn R Biol Cybern; 2000 Jul; 83(1):L1-9. PubMed ID: 10933233 [TBL] [Abstract][Full Text] [Related]
18. Spatial dynamics of receptive fields in cat primary visual cortex related to the temporal structure of thalamocortical feedforward activity. Experiments and models. Suder K; Funke K; Zhao Y; Kerscher N; Wennekers T; Wörgötter F Exp Brain Res; 2002 Jun; 144(4):430-44. PubMed ID: 12037629 [TBL] [Abstract][Full Text] [Related]
19. Are sparse-coding simple cell receptive field models physiologically plausible? Watters PA J Integr Neurosci; 2006 Sep; 5(3):333-53. PubMed ID: 17125157 [TBL] [Abstract][Full Text] [Related]
20. Role of homeostasis in learning sparse representations. Perrinet LU Neural Comput; 2010 Jul; 22(7):1812-36. PubMed ID: 20235818 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]