These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 23933391)

  • 1. Crystallographic control on the substructure of nacre tablets.
    Checa AG; Mutvei H; Osuna-Mascaró AJ; Bonarski JT; Faryna M; Berent K; Pina CM; Rousseau M; Macías-Sánchez E
    J Struct Biol; 2013 Sep; 183(3):368-376. PubMed ID: 23933391
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Homoepitaxial meso- and microscale crystal co-orientation and organic matrix network structure in Mytilus edulis nacre and calcite.
    Griesshaber E; Schmahl WW; Ubhi HS; Huber J; Nindiyasari F; Maier B; Ziegler A
    Acta Biomater; 2013 Dec; 9(12):9492-502. PubMed ID: 23896564
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct observation of the crystallographic relationship between interlamellar membranes and aragonite tablets in bivalve nacre.
    Xu J; Zhang G
    J Struct Biol; 2017 Mar; 197(3):308-311. PubMed ID: 28025153
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nacre biomineralisation: A review on the mechanisms of crystal nucleation.
    Nudelman F
    Semin Cell Dev Biol; 2015 Oct; 46():2-10. PubMed ID: 26205040
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A microstructural study of individual nacre tablet of Pinctada maxima.
    Wang SN; Yan XH; Wang R; Yu DH; Wang XX
    J Struct Biol; 2013 Sep; 183(3):404-411. PubMed ID: 23933393
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The nacre protein perlucin nucleates growth of calcium carbonate crystals.
    Blank S; Arnoldi M; Khoshnavaz S; Treccani L; Kuntz M; Mann K; Grathwohl G; Fritz M
    J Microsc; 2003 Dec; 212(Pt 3):280-91. PubMed ID: 14629554
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The SEM and TEM study on the laminated structure of individual aragonitic nacre tablet in freshwater bivalve H. cumingii Lea shell.
    Xie L; Wang XX; Li J
    J Struct Biol; 2010 Jan; 169(1):89-94. PubMed ID: 19733246
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparative study on the mechanical and structural design of nacre in gastropod and bivalve molluscs.
    Goswami A
    J Mech Behav Biomed Mater; 2021 Feb; 114():104212. PubMed ID: 33302169
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Organization pattern of nacre in Pteriidae (Bivalvia: Mollusca) explained by crystal competition.
    Checa AG; Okamoto T; Ramírez J
    Proc Biol Sci; 2006 Jun; 273(1592):1329-37. PubMed ID: 16777720
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biological control of crystallographic architecture: hierarchy and co-alignment parameters.
    Maier BJ; Griesshaber E; Alexa P; Ziegler A; Ubhi HS; Schmahl WW
    Acta Biomater; 2014 Sep; 10(9):3866-74. PubMed ID: 24590164
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomineralization on the wavy substrate: Shape transition of nacreous tablets from pyramids of amorphous nanoparticles to dome-capped prisms of single crystals.
    Zhang G
    Acta Biomater; 2016 May; 36():277-85. PubMed ID: 26971666
    [TBL] [Abstract][Full Text] [Related]  

  • 12. From colloidal nanoparticles to a single crystal: new insights into the formation of nacre's aragonite tablets.
    Zhang G; Xu J
    J Struct Biol; 2013 Apr; 182(1):36-43. PubMed ID: 23396130
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Order-disorder transition of aragonite nanoparticles in nacre.
    Huang Z; Li X
    Phys Rev Lett; 2012 Jul; 109(2):025501. PubMed ID: 23030176
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular origin of the sawtooth behavior and the toughness of nacre.
    Zhang N; Chen Y
    Mater Sci Eng C Mater Biol Appl; 2012 Aug; 32(6):1542-7. PubMed ID: 24364958
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aqueous ball milling of nacre constituents facilitates directional self-assembly of aragonite nanoparticles of the gastropod
    Lemloh ML; Verch A; Weiss IM
    J R Soc Interface; 2017 Nov; 14(136):. PubMed ID: 29142015
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoscale Transforming Mineral Phases in Fresh Nacre.
    DeVol RT; Sun CY; Marcus MA; Coppersmith SN; Myneni SC; Gilbert PU
    J Am Chem Soc; 2015 Oct; 137(41):13325-33. PubMed ID: 26403582
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spiral and target patterns in bivalve nacre manifest a natural excitable medium from layer growth of a biological liquid crystal.
    Cartwright JH; Checa AG; Escribano B; Sainz-Díaz CI
    Proc Natl Acad Sci U S A; 2009 Jun; 106(26):10499-504. PubMed ID: 19528636
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mineral bridges in nacre.
    Checa AG; Cartwright JH; Willinger MG
    J Struct Biol; 2011 Dec; 176(3):330-9. PubMed ID: 21982842
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystallographic structure of the foliated calcite of bivalves.
    Checa AG; Esteban-Delgado FJ; Rodríguez-Navarro AB
    J Struct Biol; 2007 Feb; 157(2):393-402. PubMed ID: 17097305
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pif97, a von Willebrand and Peritrophin Biomineralization Protein, Organizes Mineral Nanoparticles and Creates Intracrystalline Nanochambers.
    Chang EP; Evans JS
    Biochemistry; 2015 Sep; 54(34):5348-55. PubMed ID: 26258941
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.