These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 23933448)

  • 121. [Changes of organic soil substrate properties with different cultivation years and their effects on cucumber growth in solar greenhouse].
    Song WJ; He CX; Yu XC; Zhang ZB; Li YS; Yan Y
    Ying Yong Sheng Tai Xue Bao; 2013 Oct; 24(10):2857-62. PubMed ID: 24483080
    [TBL] [Abstract][Full Text] [Related]  

  • 122. Effects of elevated soil copper on phenology, growth and reproduction of five ruderal plant species.
    Brun LA; Le Corff J; Maillet J
    Environ Pollut; 2003; 122(3):361-8. PubMed ID: 12547525
    [TBL] [Abstract][Full Text] [Related]  

  • 123. Correlation of the structures of agricultural fungicides to gene expression in Saccharomyces cerevisiae upon exposure to toxic doses.
    Kitagawa E; Momose Y; Iwahashi H
    Environ Sci Technol; 2003 Jun; 37(12):2788-93. PubMed ID: 12854720
    [TBL] [Abstract][Full Text] [Related]  

  • 124. Gut shuttle service: endozoochory of dispersal-limited soil fauna by gastropods.
    Türke M; Lange M; Eisenhauer N
    Oecologia; 2018 Mar; 186(3):655-664. PubMed ID: 29350285
    [TBL] [Abstract][Full Text] [Related]  

  • 125. Evaluation of the benefits of a myrmecophilous oribatid mite, Aribates javensis, to a myrmicine ant, Myrmecina sp.
    Ito F
    Exp Appl Acarol; 2013 Sep; 61(1):79-85. PubMed ID: 23423426
    [TBL] [Abstract][Full Text] [Related]  

  • 126. Oribatid mite communities in the canopy of montane Abies amabilis and Tsuga heterophylla trees on Vancouver Island, British Columbia.
    Winchester NN; Lindo Z; Behan-Pelletier VM
    Environ Entomol; 2008 Apr; 37(2):464-71. PubMed ID: 18419918
    [TBL] [Abstract][Full Text] [Related]  

  • 127. Effects of high copper concentrations on soil invertebrates (earthworms and oribatid mites): : Experimental results and a model.
    Streit B
    Oecologia; 1984 Nov; 64(3):381-388. PubMed ID: 28311455
    [TBL] [Abstract][Full Text] [Related]  

  • 128. Oribatid mites (Acari: Oribatida) from the Patagonian steppe, Argentina.
    Manzo RM; Rizzuto S; Ruiz EV; Martínez PA
    Zootaxa; 2019 Oct; 4686(2):zootaxa.4686.2.4. PubMed ID: 31719489
    [TBL] [Abstract][Full Text] [Related]  

  • 129. Seasonal fluctuation of oribatid mite communities in forest microhabitats.
    Wehner K; Heethoff M; Brückner A
    PeerJ; 2018; 6():e4863. PubMed ID: 29888124
    [TBL] [Abstract][Full Text] [Related]  

  • 130. Oribatid mites (Acari, Oribatida) in Soils of the Russian Far East .
    Ryabinin NA
    Zootaxa; 2015 Jan; 3914(3):201-44. PubMed ID: 25661942
    [TBL] [Abstract][Full Text] [Related]  

  • 131. Incorporation of mineral nitrogen into the soil food web as affected by plant community composition.
    Strecker T; Jesch A; Bachmann D; Jüds M; Karbstein K; Ravenek J; Roscher C; Weigelt A; Eisenhauer N; Scheu S
    Ecol Evol; 2021 May; 11(9):4295-4309. PubMed ID: 33976811
    [TBL] [Abstract][Full Text] [Related]  

  • 132. Oribatid mite (Acari, Oribatida) feeding on ectomycorrhizal fungi.
    Schneider K; Renker C; Maraun M
    Mycorrhiza; 2005 Dec; 16(1):67-72. PubMed ID: 16133254
    [TBL] [Abstract][Full Text] [Related]  

  • 133. Avoidance tests with the oribatid mite Oppia nitens (Acari: Oribatida) in cadmium-spiked natural soils.
    Ardestani MM; Keshavarz-Jamshidian M; van Gestel CAM; van Straalen NM
    Exp Appl Acarol; 2020 Sep; 82(1):81-93. PubMed ID: 32812208
    [TBL] [Abstract][Full Text] [Related]  

  • 134. Microenvironmental preferences of oribatid mite species on the floor of a tropical rainforest.
    Badejo MA; Akinwole PO
    Exp Appl Acarol; 2006; 40(2):145-56. PubMed ID: 17103084
    [TBL] [Abstract][Full Text] [Related]  

  • 135. Cheliceral chelal design in free-living astigmatid mites.
    Bowman CE
    Exp Appl Acarol; 2021 Jun; 84(2):271-363. PubMed ID: 33988815
    [TBL] [Abstract][Full Text] [Related]  

  • 136. In vitro studies of cellular and molecular developmental toxicity of adjuvants, herbicides, and fungicides commonly used in Red River Valley, Minnesota.
    Lin N; Garry VF
    J Toxicol Environ Health A; 2000 Jul; 60(6):423-39. PubMed ID: 10933758
    [TBL] [Abstract][Full Text] [Related]  

  • 137. A new OECD test guideline for the predatory soil mite Hypoaspis aculeifer: results of an international ring test.
    Smit CE; Moser T; Römbke J
    Ecotoxicol Environ Saf; 2012 Aug; 82():56-62. PubMed ID: 22698879
    [TBL] [Abstract][Full Text] [Related]  

  • 138. Assessment of pesticide susceptibility for Typhlodromus exhilaratus and Typhlodromus phialatus strains (Acari: Phytoseiidae) from vineyards in the south of France.
    Barbar Z; Tixier MS; Kreiter S
    Exp Appl Acarol; 2007; 42(2):95-105. PubMed ID: 17564789
    [TBL] [Abstract][Full Text] [Related]  

  • 139. A qualitative and quantitative study of mites in similar alfalfa fields in Greece.
    Badieritakis EG; Fantinou AA; Emmanouel NG
    Exp Appl Acarol; 2014 Feb; 62(2):195-214. PubMed ID: 24072570
    [TBL] [Abstract][Full Text] [Related]  

  • 140. Diversity and distribution of oribatid mites (Acari:Oribatida) in a lowland rain forest in Peru and in several environments of the Brazilians states of Amazonas, Rondônia, Roraima and Pará.
    Franklin E; Santos EM; Albuquerque MI
    Braz J Biol; 2006 Nov; 66(4):999-1020. PubMed ID: 17299936
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.