BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

343 related articles for article (PubMed ID: 23933485)

  • 1. Multiaxial mechanical response and constitutive modeling of esophageal tissues: Impact on esophageal tissue engineering.
    Sommer G; Schriefl A; Zeindlinger G; Katzensteiner A; Ainödhofer H; Saxena A; Holzapfel GA
    Acta Biomater; 2013 Dec; 9(12):9379-91. PubMed ID: 23933485
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomechanical and histological characteristics of passive esophagus: experimental investigation and comparative constitutive modeling.
    Stavropoulou EA; Dafalias YF; Sokolis DP
    J Biomech; 2009 Dec; 42(16):2654-63. PubMed ID: 19766221
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D Mechanical properties of the layered esophagus: experiment and constitutive model.
    Yang W; Fung TC; Chian KS; Chong CK
    J Biomech Eng; 2006 Dec; 128(6):899-908. PubMed ID: 17154692
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Directional, regional, and layer variations of mechanical properties of esophageal tissue and its interpretation using a structure-based constitutive model.
    Yang W; Fung TC; Chian KS; Chong CK
    J Biomech Eng; 2006 Jun; 128(3):409-18. PubMed ID: 16706590
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomechanical properties of the layered oesophagus and its remodelling in experimental type-1 diabetes.
    Yang J; Zhao J; Liao D; Gregersen H
    J Biomech; 2006; 39(5):894-904. PubMed ID: 16488228
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nondestructive measurement of esophageal biaxial mechanical properties utilizing sonometry.
    Aho JM; Qiang B; Wigle DA; Tschumperlin DJ; Urban MW
    Phys Med Biol; 2016 Jul; 61(13):4781-95. PubMed ID: 27272663
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strain-energy function and three-dimensional stress distribution in esophageal biomechanics.
    Sokolis DP
    J Biomech; 2010 Oct; 43(14):2753-64. PubMed ID: 20705294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D biomechanical properties of the layered esophagus: Fung-type SEF and new constitutive model.
    Ren P; Deng X; Li K; Li G; Li W
    Biomech Model Mechanobiol; 2021 Oct; 20(5):1775-1788. PubMed ID: 34132899
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomechanical behavior and histological organization of the three-layered passive esophagus as a function of topography.
    Stavropoulou EA; Dafalias YF; Sokolis DP
    Proc Inst Mech Eng H; 2012 Jun; 226(6):477-90. PubMed ID: 22783764
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of the uniaxial and multiaxial mechanical response of a tissue-engineered vascular graft.
    Mauri A; Zeisberger SM; Hoerstrup SP; Mazza E
    Tissue Eng Part A; 2013 Mar; 19(5-6):583-92. PubMed ID: 23286285
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of homeostatic elastic moduli in two layers of the esophagus.
    Gregersen H; Liao D; Fung YC
    J Biomech Eng; 2008 Feb; 130(1):011005. PubMed ID: 18298181
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decellularized ovine esophageal mucosa for esophageal tissue engineering.
    Ackbar R; Ainoedhofer H; Gugatschka M; Saxena AK
    Technol Health Care; 2012; 20(3):215-23. PubMed ID: 22735736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A two-layered mechanical model of the rat esophagus. Experiment and theory.
    Fan Y; Gregersen H; Kassab GS
    Biomed Eng Online; 2004 Nov; 3(1):40. PubMed ID: 15518591
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical characterization of stomach tissue under uniaxial tensile action.
    Jia ZG; Li W; Zhou ZR
    J Biomech; 2015 Feb; 48(4):651-658. PubMed ID: 25596630
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiaxial mechanical behavior of biological materials.
    Sacks MS; Sun W
    Annu Rev Biomed Eng; 2003; 5():251-84. PubMed ID: 12730082
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of fibroblast-seeded collagen gels under planar biaxial mechanical constraints: a biomechanical study.
    Hu JJ; Liu YC; Chen GW; Wang MX; Lee PY
    Biomech Model Mechanobiol; 2013 Oct; 12(5):849-68. PubMed ID: 23096240
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reversible stress softening in layered rat esophagus in vitro after potassium chloride activation.
    Jiang H; Liao D; Zhao J; Wang G; Gregersen H
    Biomech Model Mechanobiol; 2017 Jun; 16(3):1065-1075. PubMed ID: 28116532
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Esophagus stretch tests: Biomechanics for tissue engineering and possible implications on the outcome of esophageal atresia repairs performed under excessive tension.
    Saxena AK; Biro E; Sommer G; Holzapfel GA
    Esophagus; 2021 Apr; 18(2):346-352. PubMed ID: 32816188
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Constitutive modeling of the passive inflation-extension behavior of the swine colon.
    Patel B; Chen H; Ahuja A; Krieger JF; Noblet J; Chambers S; Kassab GS
    J Mech Behav Biomed Mater; 2018 Jan; 77():176-186. PubMed ID: 28922650
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic mechanical stimulations induce anisotropy and improve the tensile properties of engineered tissues produced without exogenous scaffolding.
    Gauvin R; Parenteau-Bareil R; Larouche D; Marcoux H; Bisson F; Bonnet A; Auger FA; Bolduc S; Germain L
    Acta Biomater; 2011 Sep; 7(9):3294-301. PubMed ID: 21669302
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.