These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1251 related articles for article (PubMed ID: 23933616)

  • 1. Microfluidic and lab-on-a-chip preparation routes for organic nanoparticles and vesicular systems for nanomedicine applications.
    Capretto L; Carugo D; Mazzitelli S; Nastruzzi C; Zhang X
    Adv Drug Deliv Rev; 2013 Nov; 65(11-12):1496-532. PubMed ID: 23933616
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Continuous-flow production of polymeric micelles in microreactors: experimental and computational analysis.
    Capretto L; Carugo D; Cheng W; Hill M; Zhang X
    J Colloid Interface Sci; 2011 May; 357(1):243-51. PubMed ID: 21353232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic-Based Platform for the Evaluation of Nanomaterial-Mediated Drug Delivery: From High-Throughput Screening to Dynamic Monitoring.
    Yang Y; Liu S; Geng J
    Curr Pharm Des; 2019; 25(27):2953-2968. PubMed ID: 31362686
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inorganic hollow nanoparticles and nanotubes in nanomedicine Part 1. Drug/gene delivery applications.
    Son SJ; Bai X; Lee SB
    Drug Discov Today; 2007 Aug; 12(15-16):650-6. PubMed ID: 17706547
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polymer-based stimuli-responsive nanosystems for biomedical applications.
    Joglekar M; Trewyn BG
    Biotechnol J; 2013 Aug; 8(8):931-45. PubMed ID: 23843342
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent Developments in the Application of Polymeric Nanoparticles as Drug Carriers.
    Moritz M; Geszke-Moritz M
    Adv Clin Exp Med; 2015; 24(5):749-58. PubMed ID: 26768624
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lab-on-a-chip synthesis of inorganic nanomaterials and quantum dots for biomedical applications.
    Krishna KS; Li Y; Li S; Kumar CS
    Adv Drug Deliv Rev; 2013 Nov; 65(11-12):1470-95. PubMed ID: 23726944
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanomaterials and lab-on-a-chip technologies.
    Medina-Sánchez M; Miserere S; Merkoçi A
    Lab Chip; 2012 May; 12(11):1932-43. PubMed ID: 22517169
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent Advances in Microfluidics for the Preparation of Drug and Gene Delivery Systems.
    Tomeh MA; Zhao X
    Mol Pharm; 2020 Dec; 17(12):4421-4434. PubMed ID: 33213144
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Clinical Translation of Organic Nanomaterials for Cancer Therapy: A Focus on Polymeric Nanoparticles, Micelles, Liposomes and Exosomes.
    Palazzolo S; Bayda S; Hadla M; Caligiuri I; Corona G; Toffoli G; Rizzolio F
    Curr Med Chem; 2018; 25(34):4224-4268. PubMed ID: 28875844
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polymeric AIE-based nanoprobes for biomedical applications: recent advances and perspectives.
    Zhang X; Wang K; Liu M; Zhang X; Tao L; Chen Y; Wei Y
    Nanoscale; 2015 Jul; 7(27):11486-508. PubMed ID: 26010238
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Industrial lab-on-a-chip: design, applications and scale-up for drug discovery and delivery.
    Vladisavljević GT; Khalid N; Neves MA; Kuroiwa T; Nakajima M; Uemura K; Ichikawa S; Kobayashi I
    Adv Drug Deliv Rev; 2013 Nov; 65(11-12):1626-63. PubMed ID: 23899864
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Current developments and applications of microfluidic technology toward clinical translation of nanomedicines.
    Liu D; Zhang H; Fontana F; Hirvonen JT; Santos HA
    Adv Drug Deliv Rev; 2018 Mar; 128():54-83. PubMed ID: 28801093
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Liposomes: from a clinically established drug delivery system to a nanoparticle platform for theranostic nanomedicine.
    Al-Jamal WT; Kostarelos K
    Acc Chem Res; 2011 Oct; 44(10):1094-104. PubMed ID: 21812415
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidics: a transformational tool for nanomedicine development and production.
    Garg S; Heuck G; Ip S; Ramsay E
    J Drug Target; 2016 Nov; 24(9):821-835. PubMed ID: 27492254
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inorganic hollow nanoparticles and nanotubes in nanomedicine Part 2: Imaging, diagnostic, and therapeutic applications.
    Son SJ; Bai X; Lee SB
    Drug Discov Today; 2007 Aug; 12(15-16):657-63. PubMed ID: 17706548
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent Advances of Microfluidic Platforms for Controlled Drug Delivery in Nanomedicine.
    Ejeta F
    Drug Des Devel Ther; 2021; 15():3881-3891. PubMed ID: 34531650
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production of polymeric micelles by microfluidic technology for combined drug delivery: application to osteogenic differentiation of human periodontal ligament mesenchymal stem cells (hPDLSCs).
    Capretto L; Mazzitelli S; Colombo G; Piva R; Penolazzi L; Vecchiatini R; Zhang X; Nastruzzi C
    Int J Pharm; 2013 Jan; 440(2):195-206. PubMed ID: 22884778
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidics for nano-drug delivery systems: From fundamentals to industrialization.
    Zhang H; Yang J; Sun R; Han S; Yang Z; Teng L
    Acta Pharm Sin B; 2023 Aug; 13(8):3277-3299. PubMed ID: 37655333
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications.
    Mark D; Haeberle S; Roth G; von Stetten F; Zengerle R
    Chem Soc Rev; 2010 Mar; 39(3):1153-82. PubMed ID: 20179830
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 63.