These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 23933806)

  • 41. Isolation of a deet-insensitive mutant of Drosophila melanogaster (Diptera: Drosophilidae).
    Reeder NL; Ganz PJ; Carlson JR; Saunders CW
    J Econ Entomol; 2001 Dec; 94(6):1584-8. PubMed ID: 11777068
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Three dimensional structure-activity relationships (3D-QSAR) for insect repellency of diastereoisomeric compounds: a hierarchical molecular overlay approach.
    Basak SC; Natarajan R; Nowak W; Miszta P; Klun JA
    SAR QSAR Environ Res; 2007; 18(3-4):237-50. PubMed ID: 17514568
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mosquito repellents in frog skin.
    Williams CR; Smith BP; Best SM; Tyler MJ
    Biol Lett; 2006 Jun; 2(2):242-5. PubMed ID: 17148373
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Picaridin: a new insect repellent.
    Scheinfeld N
    J Drugs Dermatol; 2004; 3(1):59-60. PubMed ID: 14964747
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Interactions of DEET and Novel Repellents With Mosquito Odorant Receptors.
    Grant GG; Estrera RR; Pathak N; Hall CD; Tsikolia M; Linthicum KJ; Bernier UR; Hall AC
    J Med Entomol; 2020 Jul; 57(4):1032-1040. PubMed ID: 32048720
    [TBL] [Abstract][Full Text] [Related]  

  • 46. N,N-diethyl phenylacetamide (DEPA): A safe and effective repellent for personal protection against hematophagous arthropods.
    Kalyanasundaram M; Mathew N
    J Med Entomol; 2006 May; 43(3):518-25. PubMed ID: 16739410
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Susceptibility of Dermacentor reticulatus tick to repellents containing different active ingrediens.
    Gliniewicz A; Borecka A; Przygodzka M; Mikulak E
    Przegl Epidemiol; 2019; 73(1):117-125. PubMed ID: 31134780
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The mysterious multi-modal repellency of DEET.
    DeGennaro M
    Fly (Austin); 2015; 9(1):45-51. PubMed ID: 26252744
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Insecticidal, acaricidal and repellent effects of DEET- and IR3535-impregnated bed nets using a novel long-lasting polymer-coating technique.
    Faulde MK; Albiez G; Nehring O
    Parasitol Res; 2010 Mar; 106(4):957-65. PubMed ID: 20162432
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Field and Laboratory Evaluations of the Efficacy of DEET Repellent against Ixodes Ticks.
    Ogawa K; Komagata O; Hayashi T; Itokawa K; Morikawa S; Sawabe K; Tomita T
    Jpn J Infect Dis; 2016; 69(2):131-4. PubMed ID: 26073735
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Short report: prevention of Schistosoma mansoni infections in mice by the insect repellents AI3-37220 and N,N-diethyl-3-methylbenzamide.
    Secor WE; Freeman GL; Wirtz RA
    Am J Trop Med Hyg; 1999 Jun; 60(6):1061-2. PubMed ID: 10403344
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Insect repellents: historical perspectives and new developments.
    Katz TM; Miller JH; Hebert AA
    J Am Acad Dermatol; 2008 May; 58(5):865-71. PubMed ID: 18272250
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Natural insensitivity and the effects of concentration on the repellency and survival of American dog ticks (Dermacentor variabilis) by DEET.
    Koloski CW; Duncan CAM; Rutherford PL; Cassone BJ
    Exp Appl Acarol; 2020 Nov; 82(3):379-395. PubMed ID: 33009647
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Picardin--a new insect repellent.
    Med Lett Drugs Ther; 2005 Jun; 47(1210):46-7. PubMed ID: 15933617
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The effects of plant essential oils on escape response and mortality rate of Aedes aegypti and Anopheles minimus.
    Sathantriphop S; Achee NL; Sanguanpong U; Chareonviriyaphap T
    J Vector Ecol; 2015 Dec; 40(2):318-26. PubMed ID: 26611967
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The Repellent DEET Potentiates Carbamate Effects via Insect Muscarinic Receptor Interactions: An Alternative Strategy to Control Insect Vector-Borne Diseases.
    Abd-Ella A; Stankiewicz M; Mikulska K; Nowak W; Pennetier C; Goulu M; Fruchart-Gaillard C; Licznar P; Apaire-Marchais V; List O; Corbel V; Servent D; Lapied B
    PLoS One; 2015; 10(5):e0126406. PubMed ID: 25961834
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Tick repellents for human use: prevention of tick bites and tick-borne diseases.
    Pages F; Dautel H; Duvallet G; Kahl O; de Gentile L; Boulanger N
    Vector Borne Zoonotic Dis; 2014 Feb; 14(2):85-93. PubMed ID: 24410143
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Insect odorant receptors are molecular targets of the insect repellent DEET.
    Ditzen M; Pellegrino M; Vosshall LB
    Science; 2008 Mar; 319(5871):1838-42. PubMed ID: 18339904
    [TBL] [Abstract][Full Text] [Related]  

  • 59. DEET and other repellents are inhibitors of mosquito odorant receptors for oviposition attractants.
    Xu P; Zeng F; Bedoukian RH; Leal WS
    Insect Biochem Mol Biol; 2019 Oct; 113():103224. PubMed ID: 31446031
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effectiveness of Zanthoxylum piperitum-derived essential oil as an alternative repellent under laboratory and field applications.
    Kamsuk K; Choochote W; Chaithong U; Jitpakdi A; Tippawangkosol P; Riyong D; Pitasawat B
    Parasitol Res; 2007 Jan; 100(2):339-45. PubMed ID: 16896651
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.