These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 23933879)
1. From tip to base: parallel proteomic and phosphoproteomic analyses of successive stages of maize leaf development. Lockhart J Plant Cell; 2013 Aug; 25(8):2767. PubMed ID: 23933879 [No Abstract] [Full Text] [Related]
2. Parallel proteomic and phosphoproteomic analyses of successive stages of maize leaf development. Facette MR; Shen Z; Björnsdóttir FR; Briggs SP; Smith LG Plant Cell; 2013 Aug; 25(8):2798-812. PubMed ID: 23933881 [TBL] [Abstract][Full Text] [Related]
3. A high-resolution tissue-specific proteome and phosphoproteome atlas of maize primary roots reveals functional gradients along the root axes. Marcon C; Malik WA; Walley JW; Shen Z; Paschold A; Smith LG; Piepho HP; Briggs SP; Hochholdinger F Plant Physiol; 2015 May; 168(1):233-46. PubMed ID: 25780097 [TBL] [Abstract][Full Text] [Related]
4. Large-scale comparative phosphoprotein analysis of maize seedling leaves during greening. Ning DL; Liu KH; Liu CC; Liu JW; Qian CR; Yu Y; Wang YF; Wang YC; Wang BC Planta; 2016 Feb; 243(2):501-17. PubMed ID: 26497871 [TBL] [Abstract][Full Text] [Related]
5. Structural and metabolic transitions of C4 leaf development and differentiation defined by microscopy and quantitative proteomics in maize. Majeran W; Friso G; Ponnala L; Connolly B; Huang M; Reidel E; Zhang C; Asakura Y; Bhuiyan NH; Sun Q; Turgeon R; van Wijk KJ Plant Cell; 2010 Nov; 22(11):3509-42. PubMed ID: 21081695 [TBL] [Abstract][Full Text] [Related]
6. Development and maintenance of the ligular region of maize leaves. Strable J; Aragón-Raygoza A Mol Plant; 2024 Aug; 17(8):1175-1177. PubMed ID: 39001605 [No Abstract] [Full Text] [Related]
7. Molecular Responses of Maize Shoot to a Plant Derived Smoke Solution. Aslam MM; Rehman S; Khatoon A; Jamil M; Yamaguchi H; Hitachi K; Tsuchida K; Li X; Sunohara Y; Matsumoto H; Komatsu S Int J Mol Sci; 2019 Mar; 20(6):. PubMed ID: 30875914 [TBL] [Abstract][Full Text] [Related]
8. Comparative proteomics of leaves found at different stem positions of maize seedlings. Chen YB; Wang D; Ge XL; Zhao BG; Wang XC; Wang BC J Plant Physiol; 2016 Jul; 198():116-28. PubMed ID: 27176136 [TBL] [Abstract][Full Text] [Related]
9. Long photoperiod affects the maize transition from vegetative to reproductive stages: a proteomic comparison between photoperiod-sensitive inbred line and its recurrent parent. Tian L; Wang S; Song X; Zhang J; Liu P; Chen Z; Chen Y; Wu L Amino Acids; 2018 Jan; 50(1):149-161. PubMed ID: 29030729 [TBL] [Abstract][Full Text] [Related]
10. Large-scale Proteomic and Phosphoproteomic Analyses of Maize Seedling Leaves During De-etiolation. Gao ZF; Shen Z; Chao Q; Yan Z; Ge XL; Lu T; Zheng H; Qian CR; Wang BC Genomics Proteomics Bioinformatics; 2020 Aug; 18(4):397-414. PubMed ID: 33385613 [TBL] [Abstract][Full Text] [Related]
11. The growth zone of maize leaves subjected to drought stress offers unique possibilities to confirm transcriptome analysis with cellular, physiological and biochemical measurements. Avramova V; Abdelgawad H; Asard H; Beemster GT Commun Agric Appl Biol Sci; 2014; 79(1):111-4. PubMed ID: 25864323 [No Abstract] [Full Text] [Related]
12. Transcriptomic network analyses shed light on the regulation of cuticle development in maize leaves. Qiao P; Bourgault R; Mohammadi M; Matschi S; Philippe G; Smith LG; Gore MA; Molina I; Scanlon MJ Proc Natl Acad Sci U S A; 2020 Jun; 117(22):12464-12471. PubMed ID: 32424100 [TBL] [Abstract][Full Text] [Related]
13. A dynamic phosphoproteomic analysis provides insight into the C4 plant maize (Zea mays L.) response to natural diurnal changes. Gao ZF; Yang X; Mei Y; Zhang J; Chao Q; Wang BC Plant J; 2023 Jan; 113(2):291-307. PubMed ID: 36440987 [TBL] [Abstract][Full Text] [Related]
14. The ZmCLA4 gene in the qLA4-1 QTL controls leaf angle in maize (Zea mays L.). Zhang J; Ku LX; Han ZP; Guo SL; Liu HJ; Zhang ZZ; Cao LR; Cui XJ; Chen YH J Exp Bot; 2014 Sep; 65(17):5063-76. PubMed ID: 24987012 [TBL] [Abstract][Full Text] [Related]
15. Maize proteomics: an insight into the biology of an important cereal crop. Pechanova O; Takáč T; Samaj J; Pechan T Proteomics; 2013 Feb; 13(3-4):637-62. PubMed ID: 23197376 [TBL] [Abstract][Full Text] [Related]
16. Quantitative iTRAQ-based proteomic analysis of phosphoproteins and ABA-regulated phosphoproteins in maize leaves under osmotic stress. Hu X; Li N; Wu L; Li C; Li C; Zhang L; Liu T; Wang W Sci Rep; 2015 Oct; 5():15626. PubMed ID: 26503333 [TBL] [Abstract][Full Text] [Related]
17. TRANSPARENT LEAF AREA1 encodes a secreted proteolipid required for anther maturation, morphogenesis, and differentiation during leaf development in maize. Dresselhaus T; Amien S; Márton M; Strecke A; Brettschneider R; Cordts S Plant Cell; 2005 Mar; 17(3):730-45. PubMed ID: 15705951 [TBL] [Abstract][Full Text] [Related]
18. Phosphoproteomic analysis of the resistant and susceptible genotypes of maize infected with sugarcane mosaic virus. Wu L; Wang S; Wu J; Han Z; Wang R; Wu L; Zhang H; Chen Y; Hu X Amino Acids; 2015 Mar; 47(3):483-96. PubMed ID: 25488425 [TBL] [Abstract][Full Text] [Related]
19. Comparative phosphoproteomic analysis of developing maize seeds suggests a pivotal role for enolase in promoting starch synthesis. Cao H; Zhou Y; Chang Y; Zhang X; Li C; Ren D Plant Sci; 2019 Dec; 289():110243. PubMed ID: 31623796 [TBL] [Abstract][Full Text] [Related]
20. Maize proteomic responses to separate or overlapping soil drought and two-spotted spider mite stresses. Dworak A; Nykiel M; Walczak B; Miazek A; Szworst-Łupina D; Zagdańska B; Kiełkiewicz M Planta; 2016 Oct; 244(4):939-60. PubMed ID: 27334025 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]