These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 23933967)

  • 1. Multispectral imaging in the extended near-infrared window based on endogenous chromophores.
    Cao Q; Zhegalova NG; Wang ST; Akers WJ; Berezin MY
    J Biomed Opt; 2013 Oct; 18(10):101318. PubMed ID: 23933967
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep optical imaging of tissue using the second and third near-infrared spectral windows.
    Sordillo LA; Pu Y; Pratavieira S; Budansky Y; Alfano RR
    J Biomed Opt; 2014 May; 19(5):056004. PubMed ID: 24805808
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Penetration depth of photons in biological tissues from hyperspectral imaging in shortwave infrared in transmission and reflection geometries.
    Zhang H; Salo D; Kim DM; Komarov S; Tai YC; Berezin MY
    J Biomed Opt; 2016 Dec; 21(12):126006. PubMed ID: 27930773
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fast visible and extended near-infrared multispectral fundus camera.
    Alterini T; Díaz-Doutón F; Burgos-Fernández FJ; González L; Mateo C; Vilaseca M
    J Biomed Opt; 2019 Sep; 24(9):1-7. PubMed ID: 31538437
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Short wavelength infrared optical windows for evaluation of benign and malignant tissues.
    Sordillo DC; Sordillo LA; Sordillo PP; Shi L; Alfano RR
    J Biomed Opt; 2017 Apr; 22(4):45002. PubMed ID: 28384701
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative short-wave infrared multispectral imaging of in vivo tissue optical properties.
    Wilson RH; Nadeau KP; Jaworski FB; Rowland R; Nguyen JQ; Crouzet C; Saager RB; Choi B; Tromberg BJ; Durkin AJ
    J Biomed Opt; 2014 Aug; 19(8):086011. PubMed ID: 25120175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multispectral near-IR reflectance imaging of simulated early occlusal lesions: variation of lesion contrast with lesion depth and severity.
    Simon JC; Chan KH; Darling CL; Fried D
    Lasers Surg Med; 2014 Mar; 46(3):203-15. PubMed ID: 24375543
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Indocyanine green fluorescence in second near-infrared (NIR-II) window.
    Starosolski Z; Bhavane R; Ghaghada KB; Vasudevan SA; Kaay A; Annapragada A
    PLoS One; 2017; 12(11):e0187563. PubMed ID: 29121078
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visible and Extended Near-Infrared Multispectral Imaging for Skin Cancer Diagnosis.
    Rey-Barroso L; Burgos-Fernández FJ; Delpueyo X; Ares M; Royo S; Malvehy J; Puig S; Vilaseca M
    Sensors (Basel); 2018 May; 18(5):. PubMed ID: 29734747
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoparticles for In Vivo Lifetime Multiplexed Imaging.
    Ximendes E; Martín Rodríguez E; Ortgies DH; Tan M; Chen G; Del Rosal B
    Methods Mol Biol; 2021; 2350():239-251. PubMed ID: 34331289
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A bright organic NIR-II nanofluorophore for three-dimensional imaging into biological tissues.
    Wan H; Yue J; Zhu S; Uno T; Zhang X; Yang Q; Yu K; Hong G; Wang J; Li L; Ma Z; Gao H; Zhong Y; Su J; Antaris AL; Xia Y; Luo J; Liang Y; Dai H
    Nat Commun; 2018 Mar; 9(1):1171. PubMed ID: 29563581
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lanthanide-dye hybrid luminophores for advanced NIR-II bioimaging.
    Mei M; Wu B; Wang S; Zhang F
    Curr Opin Chem Biol; 2024 Jun; 80():102469. PubMed ID: 38776764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Review of short-wave infrared spectroscopy and imaging methods for biological tissue characterization.
    Wilson RH; Nadeau KP; Jaworski FB; Tromberg BJ; Durkin AJ
    J Biomed Opt; 2015 Mar; 20(3):030901. PubMed ID: 25803186
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Near-infrared fluorescence imaging in the largely unexplored window of 900-1,000 nm.
    Deng G; Li S; Sun Z; Li W; Zhou L; Zhang J; Gong P; Cai L
    Theranostics; 2018; 8(15):4116-4128. PubMed ID: 30128040
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In Vivo High-resolution Ratiometric Fluorescence Imaging of Inflammation Using NIR-II Nanoprobes with 1550 nm Emission.
    Wang S; Liu L; Fan Y; El-Toni AM; Alhoshan MS; Li D; Zhang F
    Nano Lett; 2019 Apr; 19(4):2418-2427. PubMed ID: 30883136
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Efficient 1064 nm NIR-II Excitation Fluorescent Molecular Dye for Deep-Tissue High-Resolution Dynamic Bioimaging.
    Li B; Lu L; Zhao M; Lei Z; Zhang F
    Angew Chem Int Ed Engl; 2018 Jun; 57(25):7483-7487. PubMed ID: 29493057
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-speed multispectral confocal biomedical imaging.
    Carver GE; Locknar SA; Morrison WA; Ramanujan VK; Farkas DL
    J Biomed Opt; 2014 Mar; 19(3):36016. PubMed ID: 24658777
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep tissue photoacoustic imaging of nickel(II) dithiolene-containing polymeric nanoparticles in the second near-infrared window.
    Park B; Lee KM; Park S; Yun M; Choi HJ; Kim J; Lee C; Kim H; Kim C
    Theranostics; 2020; 10(6):2509-2521. PubMed ID: 32194816
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep learning for in vivo near-infrared imaging.
    Ma Z; Wang F; Wang W; Zhong Y; Dai H
    Proc Natl Acad Sci U S A; 2021 Jan; 118(1):. PubMed ID: 33372162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of NIR Versus SWIR Fluorescence Image Device Performance Using Working Standards Calibrated With SI Units.
    Zhu B; Kwon S; Rasmussen JC; Litorja M; Sevick-Muraca EM
    IEEE Trans Med Imaging; 2020 Apr; 39(4):944-951. PubMed ID: 31478842
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.