These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. A variant of chronic granulomatous disease: deficient oxidative metabolism due to a low-affinity NADPH oxidase. Lew PD; Southwick FS; Stossel TP; Whitin JC; Simons E; Cohen HJ N Engl J Med; 1981 Nov; 305(22):1329-33. PubMed ID: 6270561 [No Abstract] [Full Text] [Related]
23. Chronic granulomatous disease in an adult male: A proposed X-linked defect. Biggar WD; Buron S; Holmes B J Pediatr; 1976 Jan; 88(1):63-70. PubMed ID: 812972 [TBL] [Abstract][Full Text] [Related]
24. Con-A-stimulated superoxide production by granulocytes: reversible activation of NADPH oxidase. Cohen HJ; Chovaniec ME; Wilson MK; Newburger PE Blood; 1982 Nov; 60(5):1188-94. PubMed ID: 6289943 [TBL] [Abstract][Full Text] [Related]
25. Defective initiation of the metabolic stimulation in phagocytizing granulocytes: a new congenital defect. Weening RS; Roos D; Weemaes CM; Homan-Müller JW; van Schaik ML J Lab Clin Med; 1976 Nov; 88(5):757-68. PubMed ID: 185306 [TBL] [Abstract][Full Text] [Related]
26. Allosteric transformation of reduced nicotinamide adenine dinucleotide (phosphate) oxidase induced by phagocytosis in human polymorphonuclear leukocytes. DeChatelet LR; Shirley PS; McPhail LC; Iverson DB; Doellgast GJ Infect Immun; 1978 May; 20(2):398-405. PubMed ID: 27457 [TBL] [Abstract][Full Text] [Related]
27. An in-frame triplet deletion within the gp91-phox gene in an adult X-linked chronic granulomatous disease patient with residual NADPH-oxidase activity. Jendrossek V; Ritzel A; Neubauer B; Heyden S; Gahr M Eur J Haematol; 1997 Feb; 58(2):78-85. PubMed ID: 9111587 [TBL] [Abstract][Full Text] [Related]
28. Hydrogen peroxide production in chronic granulomatous disease. A cytochemical study of reduced pyridine nucleotide oxidases. Briggs RT; Karnovsky ML; Karnovsky MJ J Clin Invest; 1977 Jun; 59(6):1088-98. PubMed ID: 193872 [TBL] [Abstract][Full Text] [Related]
29. Quantitative aspects of the production of superoxide radicals by phagocytizing human granulocytes. Weening RS; Wever R; Roos D J Lab Clin Med; 1975 Feb; 85(2):245-52. PubMed ID: 163283 [TBL] [Abstract][Full Text] [Related]
30. Deficiency of a leukocyte surface glycoprotein (LFA-1) in two patients with Mo1 deficiency. Effects of cell activation on Mo1/LFA-1 surface expression in normal and deficient leukocytes. Arnaout MA; Spits H; Terhorst C; Pitt J; Todd RF J Clin Invest; 1984 Oct; 74(4):1291-300. PubMed ID: 6237120 [TBL] [Abstract][Full Text] [Related]
31. Genotype-dependent variability in flow cytometric evaluation of reduced nicotinamide adenine dinucleotide phosphate oxidase function in patients with chronic granulomatous disease. Vowells SJ; Fleisher TA; Sekhsaria S; Alling DW; Maguire TE; Malech HL J Pediatr; 1996 Jan; 128(1):104-7. PubMed ID: 8551399 [TBL] [Abstract][Full Text] [Related]
32. Chronic granulomatous disease. Expression of the metabolic defect by in vitro culture of bone marrow progenitors. Newburger PE; Kruskall MS; Rappeport JM; Robinson SH; Chovaniec ME; Cohen HJ J Clin Invest; 1980 Sep; 66(3):599-602. PubMed ID: 6249853 [TBL] [Abstract][Full Text] [Related]
33. Studies on the molecular mechanisms of human Fc receptor-mediated phagocytosis. Amplification of ingestion is dependent on the generation of reactive oxygen metabolites and is deficient in polymorphonuclear leukocytes from patients with chronic granulomatous disease. Gresham HD; McGarr JA; Shackelford PG; Brown EJ J Clin Invest; 1988 Oct; 82(4):1192-201. PubMed ID: 3049672 [TBL] [Abstract][Full Text] [Related]
34. A study of 25 patients with chronic granulomatous disease: a new classification by correlating respiratory burst, cytochrome b, and flavoprotein. Bohler MC; Seger RA; Mouy R; Vilmer E; Fischer A; Griscelli C J Clin Immunol; 1986 Mar; 6(2):136-45. PubMed ID: 3011845 [TBL] [Abstract][Full Text] [Related]
35. Residual NADPH oxidase and survival in chronic granulomatous disease. Kuhns DB; Alvord WG; Heller T; Feld JJ; Pike KM; Marciano BE; Uzel G; DeRavin SS; Priel DA; Soule BP; Zarember KA; Malech HL; Holland SM; Gallin JI N Engl J Med; 2010 Dec; 363(27):2600-10. PubMed ID: 21190454 [TBL] [Abstract][Full Text] [Related]
36. Abnormal erythrocyte and lymphocyte chemiluminescence in chronic granulomatous disease: evidence for a generalized membrane defect. Peerless AG; Stiehm ER Clin Immunol Immunopathol; 1986 Jan; 38(1):1-12. PubMed ID: 3940741 [TBL] [Abstract][Full Text] [Related]
37. X-linked chronic granulomatous disease: correction of NADPH oxidase defect by retrovirus-mediated expression of gp91-phox. Porter CD; Parkar MH; Levinsky RJ; Collins MK; Kinnon C Blood; 1993 Oct; 82(7):2196-202. PubMed ID: 8400270 [TBL] [Abstract][Full Text] [Related]
38. Deficient flavoprotein component of the NADPH-dependent O2-.-generating oxidase in the neutrophils from three male patients with chronic granulomatous disease. Gabig TG; Lefker BA J Clin Invest; 1984 Mar; 73(3):701-5. PubMed ID: 6707199 [TBL] [Abstract][Full Text] [Related]
39. Identification of a carrier mother of a female patient with chronic granulomatous disease. Miyazaki S; Shin H; Goya N; Nakagawara A J Pediatr; 1976 Nov; 89(5):784-6. PubMed ID: 978328 [No Abstract] [Full Text] [Related]
40. The biochemical basis of nitroblue tetrazolium reduction in normal human and chronic granulomatous disease polymorphonuclear leukocytes. Baehner RL; Boxer LA; Davis J Blood; 1976 Aug; 48(2):309-13. PubMed ID: 949553 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]