BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

327 related articles for article (PubMed ID: 23934328)

  • 41. Endocannabinoid signaling and synaptic plasticity in the brain.
    Zhu PJ
    Crit Rev Neurobiol; 2006; 18(1-2):113-24. PubMed ID: 17725514
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Bidirectional regulation of synaptic SUMOylation by Group 1 metabotropic glutamate receptors.
    Pronot M; Poupon G; Pizzamiglio L; Prieto M; Chato-Astrain I; Lacagne I; Schorova L; Folci A; Brau F; Martin S
    Cell Mol Life Sci; 2022 Jun; 79(7):378. PubMed ID: 35739402
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Physiology of synapse: from molecular modules to retrograde modulation].
    Brezhestovskiĭ PD
    Ross Fiziol Zh Im I M Sechenova; 2010 Sep; 96(9):841-60. PubMed ID: 21254534
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Exciting Times: New Advances Towards Understanding the Regulation and Roles of Kainate Receptors.
    Evans AJ; Gurung S; Henley JM; Nakamura Y; Wilkinson KA
    Neurochem Res; 2019 Mar; 44(3):572-584. PubMed ID: 29270706
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Targeting SUMO-1ylation Contrasts Synaptic Dysfunction in a Mouse Model of Alzheimer's Disease.
    Marcelli S; Ficulle E; Iannuzzi F; Kövari E; Nisticò R; Feligioni M
    Mol Neurobiol; 2017 Oct; 54(8):6609-6623. PubMed ID: 27738871
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Plasticity-dependent changes in metabotropic glutamate receptor expression at excitatory hippocampal synapses.
    Cheyne JE; Montgomery JM
    Mol Cell Neurosci; 2008 Mar; 37(3):432-9. PubMed ID: 18191411
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Coactivation of pre- and postsynaptic signaling mechanisms determines cell-specific spike-timing-dependent plasticity.
    Tzounopoulos T; Rubio ME; Keen JE; Trussell LO
    Neuron; 2007 Apr; 54(2):291-301. PubMed ID: 17442249
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Neddylation regulates excitatory synaptic transmission and plasticity.
    Brockmann MM; Döngi M; Einsfelder U; Körber N; Refojo D; Stein V
    Sci Rep; 2019 Nov; 9(1):17935. PubMed ID: 31784571
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Kainate Receptors, Homeostatic Gatekeepers of Synaptic Plasticity.
    Valbuena S; Lerma J
    Neuroscience; 2021 Feb; 456():17-26. PubMed ID: 31866560
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Association of mGluR-Dependent LTD of Excitatory Synapses with Endocannabinoid-Dependent LTD of Inhibitory Synapses Leads to EPSP to Spike Potentiation in CA1 Pyramidal Neurons.
    Kim HH; Park JM; Lee SH; Ho WK
    J Neurosci; 2019 Jan; 39(2):224-237. PubMed ID: 30459224
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Presynaptic increase in IP
    Ringsevjen H; Umbach Hansen HM; Hussain S; Hvalby Ø; Jensen V; Walaas SI; Davanger S
    Brain Res; 2019 Mar; 1706():125-134. PubMed ID: 30408477
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Oxytocin suppresses basal glutamatergic transmission but facilitates activity-dependent synaptic potentiation in the medial prefrontal cortex.
    Ninan I
    J Neurochem; 2011 Oct; 119(2):324-31. PubMed ID: 21848811
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Regulation of synaptic plasticity and cognition by SUMO in normal physiology and Alzheimer's disease.
    Lee L; Dale E; Staniszewski A; Zhang H; Saeed F; Sakurai M; Fa' M; Orozco I; Michelassi F; Akpan N; Lehrer H; Arancio O
    Sci Rep; 2014 Dec; 4():7190. PubMed ID: 25448527
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Endocannabinoids and synaptic function in the CNS.
    Hashimotodani Y; Ohno-Shosaku T; Kano M
    Neuroscientist; 2007 Apr; 13(2):127-37. PubMed ID: 17404373
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Inositol 1,4,5-trisphosphate 3-kinase A overexpressed in mouse forebrain modulates synaptic transmission and mGluR-LTD of CA1 pyramidal neurons.
    Choi B; Lee HW; Mo S; Kim JY; Kim HW; Rhyu IJ; Hong E; Lee YK; Choi JS; Kim CH; Kim H
    PLoS One; 2018; 13(4):e0193859. PubMed ID: 29617377
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Kainate Receptors Inhibit Glutamate Release Via Mobilization of Endocannabinoids in Striatal Direct Pathway Spiny Projection Neurons.
    Marshall JJ; Xu J; Contractor A
    J Neurosci; 2018 Apr; 38(16):3901-3910. PubMed ID: 29540547
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Role of presynaptic metabotropic glutamate receptors in the induction of long-term synaptic plasticity of vesicular release.
    Upreti C; Zhang XL; Alford S; Stanton PK
    Neuropharmacology; 2013 Mar; 66():31-9. PubMed ID: 22626985
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Kainate receptors are involved in short- and long-term plasticity at mossy fiber synapses in the hippocampus.
    Contractor A; Swanson G; Heinemann SF
    Neuron; 2001 Jan; 29(1):209-16. PubMed ID: 11182092
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Dynamic DNA methylation controls glutamate receptor trafficking and synaptic scaling.
    Sweatt JD
    J Neurochem; 2016 May; 137(3):312-30. PubMed ID: 26849493
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Functions of kinesin superfamily proteins in neuroreceptor trafficking.
    Wang N; Xu J
    Biomed Res Int; 2015; 2015():639301. PubMed ID: 26075252
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.