These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 23934338)
1. Cell growth and accumulation of polyhydroxyalkanoates from CO2 and H2 of a hydrogen-oxidizing bacterium, Cupriavidus eutrophus B-10646. Volova TG; Kiselev EG; Shishatskaya EI; Zhila NO; Boyandin AN; Syrvacheva DA; Vinogradova ON; Kalacheva GS; Vasiliev AD; Peterson IV Bioresour Technol; 2013 Oct; 146():215-222. PubMed ID: 23934338 [TBL] [Abstract][Full Text] [Related]
2. Properties of PHA bi-, ter-, and quarter-polymers containing 4-hydroxybutyrate monomer units. Zhila N; Shishatskaya E Int J Biol Macromol; 2018 May; 111():1019-1026. PubMed ID: 29360547 [TBL] [Abstract][Full Text] [Related]
3. Polyhydroxyalkanoate synthesis based on glycerol and implementation of the process under conditions of pilot production. Volova T; Demidenko A; Kiselev E; Baranovskiy S; Shishatskaya E; Zhila N Appl Microbiol Biotechnol; 2019 Jan; 103(1):225-237. PubMed ID: 30367183 [TBL] [Abstract][Full Text] [Related]
4. Autotrophic production of polyhydroxyalkanoates using acidogenic-derived H Costa P; Basaglia M; Casella S; Kennes C; Favaro L; Carmen Veiga M Bioresour Technol; 2023 Dec; 390():129880. PubMed ID: 37852509 [TBL] [Abstract][Full Text] [Related]
5. Synthesis of Polyhydroxyalkanoates by Hydrogen-Oxidizing Bacteria in a Pilot Production Process. Volova T; Kiselev E; Zhila N; Shishatskaya E Biomacromolecules; 2019 Sep; 20(9):3261-3270. PubMed ID: 31090397 [TBL] [Abstract][Full Text] [Related]
6. [Autotrophic synthesis of polyalkanoates by Alcaligenes eutrophus in presence of carbon monoxide]. Volova TG; Kalacheva GS; Altukhova OV Mikrobiologiia; 2001; 70(6):745-52. PubMed ID: 11785130 [TBL] [Abstract][Full Text] [Related]
7. Cultivation temperature modulated the monomer composition and polymer properties of polyhydroxyalkanoate synthesized by Cupriavidus sp. L7L from levulinate as sole carbon source. Sheu DS; Chen YL; Jhuang WJ; Chen HY; Jane WN Int J Biol Macromol; 2018 Oct; 118(Pt B):1558-1564. PubMed ID: 30170365 [TBL] [Abstract][Full Text] [Related]
8. Sustainable multistage process for enhanced productivity of bioplastics from waste remediation through aerobic dynamic feeding strategy: Process integration for up-scaling. Amulya K; Jukuri S; Venkata Mohan S Bioresour Technol; 2015; 188():231-9. PubMed ID: 25682477 [TBL] [Abstract][Full Text] [Related]
9. Microbial production of poly-D-3-hydroxybutyrate from CO2. Ishizaki A; Tanaka K; Taga N Appl Microbiol Biotechnol; 2001 Oct; 57(1-2):6-12. PubMed ID: 11693935 [TBL] [Abstract][Full Text] [Related]
10. Influence of Feeding and Controlled Dissolved Oxygen Level on the Production of Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate) Copolymer by Cupriavidus sp. USMAA2-4 and Its Characterization. Shantini K; Yahya AR; Amirul AA Appl Biochem Biotechnol; 2015 Jul; 176(5):1315-34. PubMed ID: 25951779 [TBL] [Abstract][Full Text] [Related]
11. Biosynthesis of polyhydroxyalkanoates containing 2-hydroxybutyrate from unrelated carbon source by metabolically engineered Escherichia coli. Park SJ; Lee TW; Lim SC; Kim TW; Lee H; Kim MK; Lee SH; Song BK; Lee SY Appl Microbiol Biotechnol; 2012 Jan; 93(1):273-83. PubMed ID: 21842437 [TBL] [Abstract][Full Text] [Related]
12. Microbial Degradation of Polyhydroxyalkanoates with Different Chemical Compositions and Their Biodegradability. Volova TG; Prudnikova SV; Vinogradova ON; Syrvacheva DA; Shishatskaya EI Microb Ecol; 2017 Feb; 73(2):353-367. PubMed ID: 27623963 [TBL] [Abstract][Full Text] [Related]
14. Continuous Supply of Non-Combustible Gas Mixture for Safe Autotrophic Culture to Produce Polyhydroxyalkanoate by Hydrogen-Oxidizing Bacteria. Miyahara Y; Wang CT; Ishii-Hyakutake M; Tsuge T Bioengineering (Basel); 2022 Oct; 9(10):. PubMed ID: 36290554 [TBL] [Abstract][Full Text] [Related]
15. Gas fermentation combined with water electrolysis for production of polyhydroxyalkanoate copolymer from carbon dioxide by engineered Ralstonia eutropha. Di Stadio G; Orita I; Nakamura R; Fukui T Bioresour Technol; 2024 Feb; 394():130266. PubMed ID: 38159815 [TBL] [Abstract][Full Text] [Related]
16. Physiological-biochemical properties and the ability to synthesize polyhydroxyalkanoates of the glucose-utilizing strain of the hydrogen bacterium Ralstonia eutropha B8562. Volova TG; Trusova MY; Kalacheva GS; Kozhevnicov IV Appl Microbiol Biotechnol; 2006 Nov; 73(2):429-33. PubMed ID: 16960738 [TBL] [Abstract][Full Text] [Related]
17. Studies on the microbial synthesis and characterization of polyhydroxyalkanoates containing 4-hydroxyvalerate using γ-valerolactone. Muzaiyanah AR; Amirul AA Appl Biochem Biotechnol; 2013 Jul; 170(5):1194-215. PubMed ID: 23649305 [TBL] [Abstract][Full Text] [Related]
18. Production of high molecular weight poly(3-hydroxybutyrate-co-4-hydroxybutyrate) copolymer by Cupriavidus malaysiensis USMAA1020 utilising substrate with longer carbon chain. Huong KH; Elina KAR; Amirul AA Int J Biol Macromol; 2018 Sep; 116():217-223. PubMed ID: 29723627 [TBL] [Abstract][Full Text] [Related]
19. Production of polyhydroxyalkanoates (PHAs) from waste materials and by-products by submerged and solid-state fermentation. Castilho LR; Mitchell DA; Freire DM Bioresour Technol; 2009 Dec; 100(23):5996-6009. PubMed ID: 19581084 [TBL] [Abstract][Full Text] [Related]
20. Adaptation of Cupriavidus necator to conditions favoring polyhydroxyalkanoate production. Cavalheiro JM; de Almeida MC; da Fonseca MM; de Carvalho CC J Biotechnol; 2012 Dec; 164(2):309-17. PubMed ID: 23376842 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]