These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 23934809)

  • 1. Practical protocols for lipase immobilization via sol-gel techniques.
    Reetz MT
    Methods Mol Biol; 2013; 1051():241-54. PubMed ID: 23934809
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protic ionic liquid as additive on lipase immobilization using silica sol-gel.
    de Souza RL; de Faria EL; Figueiredo RT; Freitas Ldos S; Iglesias M; Mattedi S; Zanin GM; dos Santos OA; Coutinho JA; Lima ÁS; Soares CM
    Enzyme Microb Technol; 2013 Mar; 52(3):141-50. PubMed ID: 23410924
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sol-gel entrapped Candida antarctica lipase B--a biocatalyst with excellent stability for kinetic resolution of secondary alcohols.
    Ursoiu A; Paul C; Kurtán T; Péter F
    Molecules; 2012 Nov; 17(11):13045-61. PubMed ID: 23124473
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increasing the activity and enantioselectivity of lipases by sol-gel immobilization: further advancements of practical interest.
    Tielmann P; Kierkels H; Zonta A; Ilie A; Reetz MT
    Nanoscale; 2014 Jun; 6(12):6220-8. PubMed ID: 24676487
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High activity preparations of lipases and proteases for catalysis in low water containing organic solvents and ionic liquids.
    Roy I; Mukherjee J; Gupta MN
    Methods Mol Biol; 2013; 1051():275-84. PubMed ID: 23934811
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving lipase activity by immobilization and post-immobilization strategies.
    Palomo JM; Filice M; Romero O; Guisan JM
    Methods Mol Biol; 2013; 1051():255-73. PubMed ID: 23934810
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immobilized lipase from Candida sp. 99-125 on hydrophobic silicate: characterization and applications.
    Zhao B; Liu X; Jiang Y; Zhou L; He Y; Gao J
    Appl Biochem Biotechnol; 2014 Aug; 173(7):1802-14. PubMed ID: 24879595
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Different strategies for hyperactivation of lipase biocatalysts.
    Palomo JM; Guisan JM
    Methods Mol Biol; 2012; 861():329-41. PubMed ID: 22426728
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immobilization of Candida rugosa lipase on superparamagnetic Fe3O4 nanoparticles for biocatalysis in low-water media.
    Mukherjee J; Solanki K; Gupta MN
    Methods Mol Biol; 2013; 1051():117-27. PubMed ID: 23934801
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient immobilization of lipases by entrapment in hydrophobic sol-gel materials.
    Reetz MT; Zonta A; Simpelkamp J
    Biotechnol Bioeng; 1996 Mar; 49(5):527-34. PubMed ID: 18623614
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrospun polylactic acid and polyvinyl alcohol fibers as efficient and stable nanomaterials for immobilization of lipases.
    Sóti PL; Weiser D; Vigh T; Nagy ZK; Poppe L; Marosi G
    Bioprocess Biosyst Eng; 2016 Mar; 39(3):449-59. PubMed ID: 26724947
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lipase Activation and Stabilization in Room-Temperature Ionic Liquids.
    Kaar JL
    Methods Mol Biol; 2017; 1504():25-35. PubMed ID: 27770412
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Entrapment of enzymes in nanoporous sol-gels.
    Buthe A
    Methods Mol Biol; 2011; 743():223-37. PubMed ID: 21553195
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crosslinked aggregates of Rhizopus oryzae lipase as industrial biocatalysts: preparation, optimization, characterization, and application for enantioselective resolution reactions.
    Kartal F; Kilinc A
    Biotechnol Prog; 2012 Jul; 28(4):937-45. PubMed ID: 22685034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of surface modification of low cost mesoporous SiO2 carriers on the properties of immobilized lipase.
    Zou B; Hu Y; Cui F; Jiang L; Yu D; Huang H
    J Colloid Interface Sci; 2014 Mar; 417():210-6. PubMed ID: 24407679
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immobilization of Pseudomonas stutzeri lipase for the transesterification of wood sterols with fatty acid esters.
    Fauré N; Illanes A
    Appl Biochem Biotechnol; 2011 Nov; 165(5-6):1332-41. PubMed ID: 21887523
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immobilized Pseudomonas cepacia lipase for biodiesel fuel production from soybean oil.
    Noureddini H; Gao X; Philkana RS
    Bioresour Technol; 2005 May; 96(7):769-77. PubMed ID: 15607189
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Water-in-ionic liquid microemulsion-based organogels as novel matrices for enzyme immobilization.
    Pavlidis IV; Tzafestas K; Stamatis H
    Biotechnol J; 2010 Aug; 5(8):805-12. PubMed ID: 20449844
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced catalysis and enantioselective resolution of racemic naproxen methyl ester by lipase encapsulated within iron oxide nanoparticles coated with calix[8]arene valeric acid complexes.
    Sayin S; Akoz E; Yilmaz M
    Org Biomol Chem; 2014 Sep; 12(34):6634-42. PubMed ID: 25012138
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immobilization of Thermomyces lanuginosus lipase by different techniques on Immobead 150 support: characterization and applications.
    Matte CR; Bussamara R; Dupont J; Rodrigues RC; Hertz PF; Ayub MA
    Appl Biochem Biotechnol; 2014 Mar; 172(5):2507-20. PubMed ID: 24398921
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.