These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 239349)
1. Inhibition of growth of Aspergillus flavus and Trichoderma viride by peanut embryos. Lindsey DL; Turner RB Mycopathologia; 1975 Jun; 55(3):149-52. PubMed ID: 239349 [TBL] [Abstract][Full Text] [Related]
2. Some 2S albumin from peanut seeds exhibits inhibitory activity against Aspergillus flavus. Duan XH; Jiang R; Wen YJ; Bin JH Plant Physiol Biochem; 2013 May; 66():84-90. PubMed ID: 23500710 [TBL] [Abstract][Full Text] [Related]
3. Inhibition of Aspergillus flavus colonization and aflatoxin (AfB1) in peanut by methyleugenol. Sudhakar P; Latha P; Sreenivasulu Y; Reddy BV; Hemalatha TM; Balakrishna M; Reddy KR Indian J Exp Biol; 2009 Jan; 47(1):63-7. PubMed ID: 19317354 [TBL] [Abstract][Full Text] [Related]
4. In vitro studies on the potential for biological control of Aspergillus flavus and Fusarium moniliforme by Trichoderma species. 1. Macroscopical and microscopical observations of fungal interactions. Calistru C; McLean M; Berjak P Mycopathologia; 1997; 139(2):115-21. PubMed ID: 9565501 [TBL] [Abstract][Full Text] [Related]
5. Soluble amino and carbohydrate compounds in the testae of six experimental peanut lines with various degrees of Aspergillus flavus resistance. Amaya-F J; Young CT; Mixon AC; Norden AJ J Agric Food Chem; 1977; 25(3):661-3. PubMed ID: 404344 [No Abstract] [Full Text] [Related]
6. Aspergillus flavus-induced chitosanase in germinating corn and peanut seeds: A. flavus mechanism for growth dominance over associated fungi and concomitant aflatoxin production. Cuero RG; Osuji GO Food Addit Contam; 1995; 12(3):479-83. PubMed ID: 7664946 [TBL] [Abstract][Full Text] [Related]
7. Laetiporus sulphureus, edible mushroom from Serbia: investigation on volatile compounds, in vitro antimicrobial activity and in situ control of Aspergillus flavus in tomato paste. Petrović J; Glamočlija J; Stojković DS; Ćirić A; Nikolić M; Bukvički D; Guerzoni ME; Soković MD Food Chem Toxicol; 2013 Sep; 59():297-302. PubMed ID: 23811530 [TBL] [Abstract][Full Text] [Related]
8. Endophytic Fungi as Potential Biocontrol Agents against Safari Motlagh MR; Farokhzad M; Kaviani B; Kulus D Cells; 2022 Aug; 11(17):. PubMed ID: 36078051 [TBL] [Abstract][Full Text] [Related]
9. Sub3 inhibits Aspergillus flavus growth by disrupting mitochondrial energy metabolism, and has potential biocontrol during peanut storage. Zhang W; Lv Y; Lv A; Wei S; Zhang S; Li C; Hu Y J Sci Food Agric; 2021 Jan; 101(2):486-496. PubMed ID: 32643802 [TBL] [Abstract][Full Text] [Related]
10. Soil fungistasis: elevation of the exogenous carbon and nitrogen requirements for spore germination by fungistatic volatiles in soils. Griffin GJ; Hora TS; Baker R Can J Microbiol; 1975 Oct; 21(10):1468-75. PubMed ID: 135 [TBL] [Abstract][Full Text] [Related]
11. Suppression of photo-induced sporulation in Trichoderma viride by inhibitors. Betina V; SpiĭakoviJ Folia Microbiol (Praha); 1976; 21(5):362-70. PubMed ID: 61923 [TBL] [Abstract][Full Text] [Related]
12. Formulation of maize- and peanut-based semi-synthetic growth media for the ecophysiological studies of aflatoxigenic Aspergillus flavus in maize and peanut agro-ecosystems. Yazid SNE; Thanggavelu H; Mahror N; Selamat J; Samsudin NIP Int J Food Microbiol; 2018 Oct; 282():57-65. PubMed ID: 29913332 [TBL] [Abstract][Full Text] [Related]
13. Effect of peanut tannin extracts on growth of Aspergillus parasiticus and aflatoxin production. Azaizeh HA; Pettit RE; Sarr BA; Phillips TD Mycopathologia; 1990 Jun; 110(3):125-32. PubMed ID: 2388679 [TBL] [Abstract][Full Text] [Related]
14. Metabolite profiling identified pipecolic acid as an important component of peanut seed resistance against Aspergillus flavus infection. Sharma S; Choudhary B; Yadav S; Mishra A; Mishra VK; Chand R; Chen C; Pandey SP J Hazard Mater; 2021 Feb; 404(Pt A):124155. PubMed ID: 33049626 [TBL] [Abstract][Full Text] [Related]
15. Proteolytic activity of Trichoderma viride in mixed culture with Sclerotium rolfsii in soil. Rodriguez-Kabana R; Kelley WD; Curl EA Can J Microbiol; 1978 Apr; 24(4):487-90. PubMed ID: 25130 [TBL] [Abstract][Full Text] [Related]
16. Integrated small RNA and mRNA expression profiles reveal miRNAs and their target genes in response to Aspergillus flavus growth in peanut seeds. Zhao C; Li T; Zhao Y; Zhang B; Li A; Zhao S; Hou L; Xia H; Fan S; Qiu J; Li P; Zhang Y; Guo B; Wang X BMC Plant Biol; 2020 May; 20(1):215. PubMed ID: 32404101 [TBL] [Abstract][Full Text] [Related]
17. Purification of an antifungal compound, cyclo(l-Pro-d-Leu) for cereals produced by Bacillus cereus subsp. thuringiensis associated with entomopathogenic nematode. Nishanth Kumar S; Mohandas C; Nambisan B Microbiol Res; 2013 Jun; 168(5):278-88. PubMed ID: 23305769 [TBL] [Abstract][Full Text] [Related]
18. Pre- and post-emergence losses of peanut caused by aspergillus flavus link. Khadem M Zentralbl Bakteriol Parasitenkd Infektionskr Hyg; 1975; 130(3):245-50. PubMed ID: 810994 [No Abstract] [Full Text] [Related]
19. Isolation and identification of 5,7-dimethoxyisoflavone, an inhibitor of Aspergillus flavus from peanuts. Turner RB; Lindsey DL; Davis DD; Bishop RD Mycopathologia; 1975 Dec; 57(1):39-40. PubMed ID: 813148 [TBL] [Abstract][Full Text] [Related]
20. Effects of temperature and medium composition on inhibitory activities of gossypol-related compounds against aflatoxigenic fungi. Mellon JE; Dowd MK; Beltz SB J Appl Microbiol; 2013 Jul; 115(1):179-86. PubMed ID: 23594138 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]