BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 23935044)

  • 1. Control of the Escherichia coli sialoregulon by transcriptional repressor NanR.
    Kalivoda KA; Steenbergen SM; Vimr ER
    J Bacteriol; 2013 Oct; 195(20):4689-701. PubMed ID: 23935044
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of sialic acid catabolism by the DNA binding protein NanR in Escherichia coli.
    Kalivoda KA; Steenbergen SM; Vimr ER; Plumbridge J
    J Bacteriol; 2003 Aug; 185(16):4806-15. PubMed ID: 12897000
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of NanR gene repression and allosteric induction of bacterial sialic acid metabolism.
    Horne CR; Venugopal H; Panjikar S; Wood DM; Henrickson A; Brookes E; North RA; Murphy JM; Friemann R; Griffin MDW; Ramm G; Demeler B; Dobson RCJ
    Nat Commun; 2021 Mar; 12(1):1988. PubMed ID: 33790291
    [TBL] [Abstract][Full Text] [Related]  

  • 4. YjhS (NanS) is required for Escherichia coli to grow on 9-O-acetylated N-acetylneuraminic acid.
    Steenbergen SM; Jirik JL; Vimr ER
    J Bacteriol; 2009 Nov; 191(22):7134-9. PubMed ID: 19749043
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular and Functional Insights into the Regulation of d-Galactonate Metabolism by the Transcriptional Regulator DgoR in
    Singh B; Arya G; Kundu N; Sangwan A; Nongthombam S; Chaba R
    J Bacteriol; 2019 Feb; 201(4):. PubMed ID: 30455279
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the structure and function of Escherichia coli YjhC: An oxidoreductase involved in bacterial sialic acid metabolism.
    Horne CR; Kind L; Davies JS; Dobson RCJ
    Proteins; 2020 May; 88(5):654-668. PubMed ID: 31697432
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcription of Sialic Acid Catabolism Genes in Corynebacterium glutamicum Is Subject to Catabolite Repression and Control by the Transcriptional Repressor NanR.
    Uhde A; Brühl N; Goldbeck O; Matano C; Gurow O; Rückert C; Marin K; Wendisch VF; Krämer R; Seibold GM
    J Bacteriol; 2016 Aug; 198(16):2204-18. PubMed ID: 27274030
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrated regulatory responses of fimB to N-acetylneuraminic (sialic) acid and GlcNAc in Escherichia coli K-12.
    Sohanpal BK; El-Labany S; Lahooti M; Plumbridge JA; Blomfield IC
    Proc Natl Acad Sci U S A; 2004 Nov; 101(46):16322-7. PubMed ID: 15534208
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unexpected Diversity of Escherichia coli Sialate O-Acetyl Esterase NanS.
    Rangel A; Steenbergen SM; Vimr ER
    J Bacteriol; 2016 Oct; 198(20):2803-9. PubMed ID: 27481927
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diversity of microbial sialic acid metabolism.
    Vimr ER; Kalivoda KA; Deszo EL; Steenbergen SM
    Microbiol Mol Biol Rev; 2004 Mar; 68(1):132-53. PubMed ID: 15007099
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distant cis-active sequences and sialic acid control the expression of fimB in Escherichia coli K-12.
    El-Labany S; Sohanpal BK; Lahooti M; Akerman R; Blomfield IC
    Mol Microbiol; 2003 Aug; 49(4):1109-18. PubMed ID: 12890032
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual control by regulators, GntH and GntR, of the GntII genes for gluconate metabolism in Escherichia coli.
    Tsunedomi R; Izu H; Kawai T; Yamada M
    J Mol Microbiol Biotechnol; 2003; 6(1):41-56. PubMed ID: 14593252
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The activator of GntII genes for gluconate metabolism, GntH, exerts negative control of GntR-regulated GntI genes in Escherichia coli.
    Tsunedomi R; Izu H; Kawai T; Matsushita K; Ferenci T; Yamada M
    J Bacteriol; 2003 Mar; 185(6):1783-95. PubMed ID: 12618441
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The putative Escherichia coli dehydrogenase YjhC metabolises two dehydrated forms of N-acetylneuraminate produced by some sialidases.
    Kentache T; Thabault L; Peracchi A; Frédérick R; Bommer GT; Van Schaftingen E
    Biosci Rep; 2020 Jun; 40(6):. PubMed ID: 32542330
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple co-regulatory elements and IHF are necessary for the control of fimB expression in response to sialic acid and N-acetylglucosamine in Escherichia coli K-12.
    Sohanpal BK; Friar S; Roobol J; Plumbridge JA; Blomfield IC
    Mol Microbiol; 2007 Feb; 63(4):1223-36. PubMed ID: 17238917
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A GntR-type transcriptional repressor controls sialic acid utilization in Bifidobacterium breve UCC2003.
    Egan M; O'Connell Motherway M; van Sinderen D
    FEMS Microbiol Lett; 2015 Feb; 362(4):. PubMed ID: 25688064
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural insights into the regulation of sialic acid catabolism by the Vibrio vulnificus transcriptional repressor NanR.
    Hwang J; Kim BS; Jang SY; Lim JG; You DJ; Jung HS; Oh TK; Lee JO; Choi SH; Kim MH
    Proc Natl Acad Sci U S A; 2013 Jul; 110(30):E2829-37. PubMed ID: 23832782
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comprehensive alanine scanning mutagenesis of the Escherichia coli transcriptional activator SoxS: identifying amino acids important for DNA binding and transcription activation.
    Griffith KL; Wolf RE
    J Mol Biol; 2002 Sep; 322(2):237-57. PubMed ID: 12217688
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Repressor for the sn-glycerol 3-phosphate regulon of Escherichia coli K-12: primary structure and identification of the DNA-binding domain.
    Zeng G; Ye S; Larson TJ
    J Bacteriol; 1996 Dec; 178(24):7080-9. PubMed ID: 8955387
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular insights into effector binding by DgoR, a GntR/FadR family transcriptional repressor of D-galactonate metabolism in Escherichia coli.
    Arya G; Pal M; Sharma M; Singh B; Singh S; Agrawal V; Chaba R
    Mol Microbiol; 2021 Apr; 115(4):591-609. PubMed ID: 33068046
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.