These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 23935114)

  • 1. Growth habit of the late Paleozoic rhizomorphic tree-lycopsid family Diaphorodendraceae: phylogenetic, evolutionary, and paleoecological significance.
    Dimichele WA; Elrick SD; Bateman RM
    Am J Bot; 2013 Aug; 100(8):1604-25. PubMed ID: 23935114
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New perspective on the architecture of the Late Devonian arborescent lycopsid Leptophloeum rhombicum (Leptophloeaceae).
    Wang Q; Geng BY; Dilcher DL
    Am J Bot; 2005 Jan; 92(1):83-91. PubMed ID: 21652387
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lilingostrobus chaloneri gen. et sp. nov., a Late Devonian woody lycopsid from Hunan, China.
    Gerrienne P; Cascales-Minana B; Prestianni C; Steemans P; Cheng-Sen L
    PLoS One; 2018; 13(7):e0198287. PubMed ID: 29995908
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anatomically preserved "strobili" and leaves from the Permian of China (Dorsalistachyaceae, fam. nov.) broaden knowledge of Noeggerathiales and constrain their possible taxonomic affinities.
    Wang SJ; Bateman RM; Spencer AR; Wang J; Shao L; Hilton J
    Am J Bot; 2017 Jan; 104(1):127-149. PubMed ID: 28062406
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Late Devonian tree lycopsid with large strobili and isotomous roots.
    Liu L; Wang DM; Zhou Y; Qin M; Ferguson DK; Meng MC
    Commun Biol; 2022 Sep; 5(1):966. PubMed ID: 36109665
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vegetative characters, growth habit and microsporangiate strobilus of lycopsid Minostrobus chaohuensis.
    Meng MC; Wang DM; Yao JX
    PLoS One; 2015; 10(3):e0122167. PubMed ID: 25816297
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Root evolution at the base of the lycophyte clade: insights from an Early Devonian lycophyte.
    Matsunaga KK; Tomescu AM
    Ann Bot; 2016 Apr; 117(4):585-98. PubMed ID: 26921730
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arborescent lycopsid periderm production was limited.
    D'Antonio MP; Boyce CK
    New Phytol; 2020 Oct; 228(2):741-751. PubMed ID: 32506426
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolution and ecology of plant architecture: integrating insights from the fossil record, extant morphology, developmental genetics and phylogenies.
    Chomicki G; Coiro M; Renner SS
    Ann Bot; 2017 Nov; 120(6):855-891. PubMed ID: 29165551
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An organismal concept for Sengelia radicans gen. et sp. nov. - morphology and natural history of an Early Devonian lycophyte.
    Matsunaga KKS; Tomescu AMF
    Ann Bot; 2017 May; 119(7):1097-1113. PubMed ID: 28334100
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The evolutionary diversification of seed size: using the past to understand the present.
    Sims HJ
    Evolution; 2012 May; 66(5):1636-49. PubMed ID: 22519796
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Re-study of Guangdedendron micrum from the Late Devonian Xinhang forest.
    Gao X; Liu L; Qin M; Zhou Y; Mao L; Wang DM
    BMC Ecol Evol; 2022 May; 22(1):69. PubMed ID: 35606742
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Applying morphometrics to early land plant systematics: a new Leclercqia (Lycopsida) species from Washington State, USA.
    Benca JP; Carlisle MH; Bergen S; Strömberg CA
    Am J Bot; 2014 Mar; 101(3):510-20. PubMed ID: 24634435
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How early ferns became trees.
    Galtier J; Hueber FM
    Proc Biol Sci; 2001 Sep; 268(1479):1955-7. PubMed ID: 11564354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Taxonomy and Phylogeny Can Yield Comparable Results in Comparative Paleontological Analyses.
    Soul LC; Friedman M
    Syst Biol; 2015 Jul; 64(4):608-20. PubMed ID: 25805045
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phylogeny of extant and fossil Juglandaceae inferred from the integration of molecular and morphological data sets.
    Manos PS; Soltis PS; Soltis DE; Manchester SR; Oh SH; Bell CD; Dilcher DL; Stone DE
    Syst Biol; 2007 Jun; 56(3):412-30. PubMed ID: 17558964
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Middle Jurassic evidence for the origin of Cupressaceae: A paleobotanical context for the roles of regulatory genetics and development in the evolution of conifer seed cones.
    Spencer AR; Mapes G; Bateman RM; Hilton J; Rothwell GW
    Am J Bot; 2015 Jun; 102(6):942-61. PubMed ID: 26101419
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [The first trees. The Archaeopteris model].
    Meyer-Berthaud B
    J Soc Biol; 2000; 194(2):65-70. PubMed ID: 11098430
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enigmatic fossil plants with three-dimensional, arborescent-growth architecture from the earliest Carboniferous of New Brunswick, Canada.
    Gastaldo RA; Gensel PG; Glasspool IJ; Hinds SJ; King OA; McLean D; Park AF; Stimson MR; Stonesifer T
    Curr Biol; 2024 Feb; 34(4):781-792.e3. PubMed ID: 38309270
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Foundations of the new phylogenetics].
    Pavlinov IIa
    Zh Obshch Biol; 2004; 65(4):334-66. PubMed ID: 15490579
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.