These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 23935210)
1. Computing the partition function, ensemble averages, and density of states for lattice spin systems by sampling the mean. Gillespie D J Comput Phys; 2013 Oct; 250():1-12. PubMed ID: 23935210 [TBL] [Abstract][Full Text] [Related]
2. Enhanced sampling in generalized ensemble with large gap of sampling parameter: case study in temperature space random walk. Zhang C; Ma J J Chem Phys; 2009 May; 130(19):194112. PubMed ID: 19466826 [TBL] [Abstract][Full Text] [Related]
3. Multicanonical Monte Carlo ensemble growth algorithm. Vernizzi G; Nguyen TD; Orland H; Olvera de la Cruz M Phys Rev E; 2020 Feb; 101(2-1):021301. PubMed ID: 32168705 [TBL] [Abstract][Full Text] [Related]
4. Accurate estimation of the density of states from Monte Carlo transition probability data. Fenwick MK J Chem Phys; 2006 Oct; 125(14):144905. PubMed ID: 17042648 [TBL] [Abstract][Full Text] [Related]
5. Monte Carlo simulation of classical spin models with chaotic billiards. Suzuki H Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):052144. PubMed ID: 24329251 [TBL] [Abstract][Full Text] [Related]
6. Determining the density of states for classical statistical models: a random walk algorithm to produce a flat histogram. Wang F; Landau DP Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov; 64(5 Pt 2):056101. PubMed ID: 11736008 [TBL] [Abstract][Full Text] [Related]
7. From network reliability to the Ising model: A parallel scheme for estimating the joint density of states. Ren Y; Eubank S; Nath M Phys Rev E; 2016 Oct; 94(4-1):042125. PubMed ID: 27841505 [TBL] [Abstract][Full Text] [Related]
8. Efficient Monte Carlo algorithm in quasi-one-dimensional Ising spin systems. Nakamura T Phys Rev Lett; 2008 Nov; 101(21):210602. PubMed ID: 19113399 [TBL] [Abstract][Full Text] [Related]
9. Perturbation method to calculate the density of states. Persson RA Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 2):066708. PubMed ID: 23368079 [TBL] [Abstract][Full Text] [Related]
10. Minimal energy ensemble Monte Carlo algorithm for the partition function of fermions coupled to classical fields. Grzybowski PR; Czekaj Ł; Nogala M; Ścibior A; Chhajlany RW Phys Rev E; 2016 Jun; 93(6):061301. PubMed ID: 27415201 [TBL] [Abstract][Full Text] [Related]
11. Quantum Monte Carlo algorithm for softcore boson systems. Smakov J; Harada K; Kawashima N Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Oct; 68(4 Pt 2):046708. PubMed ID: 14683080 [TBL] [Abstract][Full Text] [Related]
12. Monte Carlo method for computing density of states and quench probability of potential energy and enthalpy landscapes. Mauro JC; Loucks RJ; Balakrishnan J; Raghavan S J Chem Phys; 2007 May; 126(19):194103. PubMed ID: 17523794 [TBL] [Abstract][Full Text] [Related]
13. Generalization of the Wang-Landau method for off-lattice simulations. Shell MS; Debenedetti PG; Panagiotopoulos AZ Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Nov; 66(5 Pt 2):056703. PubMed ID: 12513633 [TBL] [Abstract][Full Text] [Related]
14. Effective ergodicity in single-spin-flip dynamics. Süzen M Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032141. PubMed ID: 25314429 [TBL] [Abstract][Full Text] [Related]
15. Overcoming the slowing down of flat-histogram Monte Carlo simulations: cluster updates and optimized broad-histogram ensembles. Wu Y; Körner M; Colonna-Romano L; Trebst S; Gould H; Machta J; Troyer M Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Oct; 72(4 Pt 2):046704. PubMed ID: 16383564 [TBL] [Abstract][Full Text] [Related]
16. Generalized-ensemble algorithms: enhanced sampling techniques for Monte Carlo and molecular dynamics simulations. Okamoto Y J Mol Graph Model; 2004 May; 22(5):425-39. PubMed ID: 15099838 [TBL] [Abstract][Full Text] [Related]
17. Three-dimensional ising model in the fixed-magnetization ensemble: A monte carlo study. Blote HW; Heringa JR; Tsypin MM Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jul; 62(1 Pt A):77-82. PubMed ID: 11088437 [TBL] [Abstract][Full Text] [Related]
18. Exact ground states of large two-dimensional planar Ising spin glasses. Pardella G; Liers F Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Nov; 78(5 Pt 2):056705. PubMed ID: 19113235 [TBL] [Abstract][Full Text] [Related]
19. A statistical sampling algorithm for RNA secondary structure prediction. Ding Y; Lawrence CE Nucleic Acids Res; 2003 Dec; 31(24):7280-301. PubMed ID: 14654704 [TBL] [Abstract][Full Text] [Related]
20. Monte Carlo study of degenerate ground states and residual entropy in a frustrated honeycomb lattice Ising model. Andrews S; De Sterck H; Inglis S; Melko RG Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 1):041127. PubMed ID: 19518193 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]