These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 23935218)

  • 1. A penalized likelihood approach to estimate within-household contact networks from egocentric data.
    Potter GE; Hens N
    J R Stat Soc Ser C Appl Stat; 2013 Aug; 62(4):629-648. PubMed ID: 23935218
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ESTIMATING WITHIN-HOUSEHOLD CONTACT NETWORKS FROM EGOCENTRIC DATA.
    Potter GE; Handcock MS; Longini IM; Halloran ME
    Ann Appl Stat; 2011; 5(3):1816-1838. PubMed ID: 22427793
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Household members do not contact each other at random: implications for infectious disease modelling.
    Goeyvaerts N; Santermans E; Potter G; Torneri A; Van Kerckhove K; Willem L; Aerts M; Beutels P; Hens N
    Proc Biol Sci; 2018 Dec; 285(1893):20182201. PubMed ID: 30963910
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ESTIMATING WITHIN-SCHOOL CONTACT NETWORKS TO UNDERSTAND INFLUENZA TRANSMISSION.
    Potter GE; Handcock MS; Longini IM; Halloran ME
    Ann Appl Stat; 2012 Mar; 6(1):1-26. PubMed ID: 22639701
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A household-based study of contact networks relevant for the spread of infectious diseases in the highlands of Peru.
    Grijalva CG; Goeyvaerts N; Verastegui H; Edwards KM; Gil AI; Lanata CF; Hens N;
    PLoS One; 2015; 10(3):e0118457. PubMed ID: 25734772
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mining social mixing patterns for infectious disease models based on a two-day population survey in Belgium.
    Hens N; Goeyvaerts N; Aerts M; Shkedy Z; Van Damme P; Beutels P
    BMC Infect Dis; 2009 Jan; 9():5. PubMed ID: 19154612
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Epidemic spread on weighted networks.
    Kamp C; Moslonka-Lefebvre M; Alizon S
    PLoS Comput Biol; 2013; 9(12):e1003352. PubMed ID: 24348225
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contact profiles in eight European countries and implications for modelling the spread of airborne infectious diseases.
    Kretzschmar M; Mikolajczyk RT
    PLoS One; 2009 Jun; 4(6):e5931. PubMed ID: 19536278
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantifying social contacts in a household setting of rural Kenya using wearable proximity sensors.
    Kiti MC; Tizzoni M; Kinyanjui TM; Koech DC; Munywoki PK; Meriac M; Cappa L; Panisson A; Barrat A; Cattuto C; Nokes DJ
    EPJ Data Sci; 2016; 5():21. PubMed ID: 27471661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recalibrating disease parameters for increasing realism in modeling epidemics in closed settings.
    Bioglio L; GĂ©nois M; Vestergaard CL; Poletto C; Barrat A; Colizza V
    BMC Infect Dis; 2016 Nov; 16(1):676. PubMed ID: 27842507
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tracking social contact networks with online respondent-driven detection: who recruits whom?
    Stein ML; van der Heijden PG; Buskens V; van Steenbergen JE; Bengtsson L; Koppeschaar CE; Thorson A; Kretzschmar ME
    BMC Infect Dis; 2015 Nov; 15():522. PubMed ID: 26573658
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling workplace contact networks: The effects of organizational structure, architecture, and reporting errors on epidemic predictions.
    Potter GE; Smieszek T; Sailer K
    Netw Sci (Camb Univ Press); 2015 Sep; 3(3):298-325. PubMed ID: 26634122
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of heterogeneous and clustered contact patterns on infectious disease dynamics.
    Volz EM; Miller JC; Galvani A; Ancel Meyers L
    PLoS Comput Biol; 2011 Jun; 7(6):e1002042. PubMed ID: 21673864
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disease persistence on temporal contact networks accounting for heterogeneous infectious periods.
    Darbon A; Colombi D; Valdano E; Savini L; Giovannini A; Colizza V
    R Soc Open Sci; 2019 Jan; 6(1):181404. PubMed ID: 30800384
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting epidemics on directed contact networks.
    Meyers LA; Newman ME; Pourbohloul B
    J Theor Biol; 2006 Jun; 240(3):400-18. PubMed ID: 16300796
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deterministic epidemic models with explicit household structure.
    House T; Keeling MJ
    Math Biosci; 2008 May; 213(1):29-39. PubMed ID: 18374370
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contact Patterns in a High School: A Comparison between Data Collected Using Wearable Sensors, Contact Diaries and Friendship Surveys.
    Mastrandrea R; Fournet J; Barrat A
    PLoS One; 2015; 10(9):e0136497. PubMed ID: 26325289
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimating contact patterns relevant to the spread of infectious diseases in Russia.
    Ajelli M; Litvinova M
    J Theor Biol; 2017 Apr; 419():1-7. PubMed ID: 28161415
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of pathogen dependency in a multi-pathogen infectious disease system including population level heterogeneity - a simulation study.
    Bakuli A; Klawonn F; Karch A; Mikolajczyk R
    Theor Biol Med Model; 2017 Dec; 14(1):26. PubMed ID: 29237462
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Close contact infection dynamics over time: insights from a second large-scale social contact survey in Flanders, Belgium, in 2010-2011.
    Hoang TV; Coletti P; Kifle YW; Kerckhove KV; Vercruysse S; Willem L; Beutels P; Hens N
    BMC Infect Dis; 2021 Mar; 21(1):274. PubMed ID: 33736606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.