These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Existence of the passage to the limit of an inviscid fluid. Goldobin DS Eur Phys J E Soft Matter; 2017 Nov; 40(11):103. PubMed ID: 29178057 [TBL] [Abstract][Full Text] [Related]
4. Triple-deck analysis of transonic high Reynolds number flow through slender channels. Kluwick A; Kornfeld M Philos Trans A Math Phys Eng Sci; 2014 Jul; 372(2020):. PubMed ID: 24936010 [TBL] [Abstract][Full Text] [Related]
5. Multiscale kinetic inviscid flux extracted from a gas-kinetic scheme for simulating incompressible and compressible flows. Liu S; Cao J; Zhong C Phys Rev E; 2020 Sep; 102(3-1):033310. PubMed ID: 33075992 [TBL] [Abstract][Full Text] [Related]
6. Stochastic flow approach to model the mean velocity profile of wall-bounded flows. Pinier B; Mémin E; Laizet S; Lewandowski R Phys Rev E; 2019 Jun; 99(6-1):063101. PubMed ID: 31330641 [TBL] [Abstract][Full Text] [Related]
7. Subicular neurons encode concave and convex geometries. Sun Y; Nitz DA; Xu X; Giocomo LM Nature; 2024 Mar; 627(8005):821-829. PubMed ID: 38448584 [TBL] [Abstract][Full Text] [Related]
8. Theoretical analysis and numerical verification of the consistency of viscous smoothed-particle-hydrodynamics formulations in simulating free-surface flows. Colagrossi A; Antuono M; Souto-Iglesias A; Le Touzé D Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Aug; 84(2 Pt 2):026705. PubMed ID: 21929142 [TBL] [Abstract][Full Text] [Related]
9. Unstructured mesh methods for the solution of the unsteady compressible flow equations with moving boundary components. Hassan O; Morgan K; Weatherill N Philos Trans A Math Phys Eng Sci; 2007 Oct; 365(1859):2531-52. PubMed ID: 17519197 [TBL] [Abstract][Full Text] [Related]
10. Linear stability, transient energy growth, and the role of viscosity stratification in compressible plane Couette flow. Malik M; Dey J; Alam M Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 2):036322. PubMed ID: 18517526 [TBL] [Abstract][Full Text] [Related]
11. An effective numerical method for solving viscous-inviscid interaction problems. Kravtsova MA; Zametaev VB; Ruban AI Philos Trans A Math Phys Eng Sci; 2005 May; 363(1830):1157-67. PubMed ID: 16105776 [TBL] [Abstract][Full Text] [Related]
12. Transit times in turbulent flows. Pécseli HL; Trulsen J Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 2):046310. PubMed ID: 20481830 [TBL] [Abstract][Full Text] [Related]
18. Interaction of oscillatory and steady turbulent flows in airway tubes during impedance measurement. Louis B; Isabey D J Appl Physiol (1985); 1993 Jan; 74(1):116-25. PubMed ID: 8444681 [TBL] [Abstract][Full Text] [Related]
19. A comparison of no-slip, stress-free and inviscid models of rapidly rotating fluid in a spherical shell. Livermore PW; Bailey LM; Hollerbach R Sci Rep; 2016 Mar; 6():22812. PubMed ID: 26980289 [TBL] [Abstract][Full Text] [Related]
20. Three-dimensional lattice Boltzmann model for compressible flows. Sun C; Hsu AT Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jul; 68(1 Pt 2):016303. PubMed ID: 12935242 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]