These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 23935502)

  • 1. The late endosomal HOPS complex anchors active G-protein signaling essential for pathogenesis in magnaporthe oryzae.
    Ramanujam R; Calvert ME; Selvaraj P; Naqvi NI
    PLoS Pathog; 2013; 9(8):e1003527. PubMed ID: 23935502
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Cyclase-associated protein Cap1 is important for proper regulation of infection-related morphogenesis in Magnaporthe oryzae.
    Zhou X; Zhang H; Li G; Shaw B; Xu JR
    PLoS Pathog; 2012 Sep; 8(9):e1002911. PubMed ID: 22969430
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The putative Gγ subunit gene MGG1 is required for conidiation, appressorium formation, mating and pathogenicity in Magnaporthe oryzae.
    Li Y; Que Y; Liu Y; Yue X; Meng X; Zhang Z; Wang Z
    Curr Genet; 2015 Nov; 61(4):641-51. PubMed ID: 25944571
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PdeH, a high-affinity cAMP phosphodiesterase, is a key regulator of asexual and pathogenic differentiation in Magnaporthe oryzae.
    Ramanujam R; Naqvi NI
    PLoS Pathog; 2010 May; 6(5):e1000897. PubMed ID: 20463817
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolomics Analysis Identifies Sphingolipids as Key Signaling Moieties in Appressorium Morphogenesis and Function in Magnaporthe oryzae.
    Liu XH; Liang S; Wei YY; Zhu XM; Li L; Liu PP; Zheng QX; Zhou HN; Zhang Y; Mao LJ; Fernandes CM; Del Poeta M; Naqvi NI; Lin FC
    mBio; 2019 Aug; 10(4):. PubMed ID: 31431550
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MoEnd3 regulates appressorium formation and virulence through mediating endocytosis in rice blast fungus Magnaporthe oryzae.
    Li X; Gao C; Li L; Liu M; Yin Z; Zhang H; Zheng X; Wang P; Zhang Z
    PLoS Pathog; 2017 Jun; 13(6):e1006449. PubMed ID: 28628655
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MoMip11, a MoRgs7-interacting protein, functions as a scaffolding protein to regulate cAMP signaling and pathogenicity in the rice blast fungus Magnaporthe oryzae.
    Yin Z; Zhang X; Wang J; Yang L; Feng W; Chen C; Gao C; Zhang H; Zheng X; Wang P; Zhang Z
    Environ Microbiol; 2018 Sep; 20(9):3168-3185. PubMed ID: 29727050
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MoRic8 Is a novel component of G-protein signaling during plant infection by the rice blast fungus Magnaporthe oryzae.
    Li Y; Yan X; Wang H; Liang S; Ma WB; Fang MY; Talbot NJ; Wang ZY
    Mol Plant Microbe Interact; 2010 Mar; 23(3):317-31. PubMed ID: 20121453
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temporal analysis of the magnaporthe oryzae proteome during conidial germination and cyclic AMP (cAMP)-mediated appressorium formation.
    Franck WL; Gokce E; Oh Y; Muddiman DC; Dean RA
    Mol Cell Proteomics; 2013 Aug; 12(8):2249-65. PubMed ID: 23665591
    [TBL] [Abstract][Full Text] [Related]  

  • 10. WISH, a novel CFEM GPCR is indispensable for surface sensing, asexual and pathogenic differentiation in rice blast fungus.
    Sabnam N; Roy Barman S
    Fungal Genet Biol; 2017 Aug; 105():37-51. PubMed ID: 28576657
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The farnesyltransferase β-subunit RAM1 regulates localization of RAS proteins and appressorium-mediated infection in Magnaporthe oryzae.
    Aboelfotoh Hendy A; Xing J; Chen X; Chen XL
    Mol Plant Pathol; 2019 Sep; 20(9):1264-1278. PubMed ID: 31250536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure-function analyses of the Pth11 receptor reveal an important role for CFEM motif and redox regulation in rice blast.
    Kou Y; Tan YH; Ramanujam R; Naqvi NI
    New Phytol; 2017 Apr; 214(1):330-342. PubMed ID: 27898176
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PKA activity is essential for relieving the suppression of hyphal growth and appressorium formation by MoSfl1 in Magnaporthe oryzae.
    Li Y; Zhang X; Hu S; Liu H; Xu JR
    PLoS Genet; 2017 Aug; 13(8):e1006954. PubMed ID: 28806765
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bypassing both surface attachment and surface recognition requirements for appressorium formation by overactive ras signaling in Magnaporthe oryzae.
    Zhou X; Zhao X; Xue C; Dai Y; Xu JR
    Mol Plant Microbe Interact; 2014 Sep; 27(9):996-1004. PubMed ID: 24835254
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative proteomic analyses reveal that the regulators of G-protein signaling proteins regulate amino acid metabolism of the rice blast fungus Magnaporthe oryzae.
    Zhang H; Ma H; Xie X; Ji J; Dong Y; Du Y; Tang W; Zheng X; Wang P; Zhang Z
    Proteomics; 2014 Nov; 14(21-22):2508-22. PubMed ID: 25236475
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnaporthe oryzae Auxiliary Activity Protein MoAa91 Functions as Chitin-Binding Protein To Induce Appressorium Formation on Artificial Inductive Surfaces and Suppress Plant Immunity.
    Li Y; Liu X; Liu M; Wang Y; Zou Y; You Y; Yang L; Hu J; Zhang H; Zheng X; Wang P; Zhang Z
    mBio; 2020 Mar; 11(2):. PubMed ID: 32209696
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MoCpa1-mediated arginine biosynthesis is crucial for fungal growth, conidiation, and plant infection of Magnaporthe oryzae.
    Aron O; Wang M; Mabeche AW; Wajjiha B; Li M; Yang S; You H; Cai Y; Zhang T; Li Y; Wang B; Zhang D; Wang Z; Tang W
    Appl Microbiol Biotechnol; 2021 Aug; 105(14-15):5915-5929. PubMed ID: 34292355
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure-function analysis of Rgs1 in Magnaporthe oryzae: role of DEP domains in subcellular targeting.
    Ramanujam R; Yishi X; Liu H; Naqvi NI
    PLoS One; 2012; 7(7):e41084. PubMed ID: 22927898
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Homeobox transcription factors are required for conidiation and appressorium development in the rice blast fungus Magnaporthe oryzae.
    Kim S; Park SY; Kim KS; Rho HS; Chi MH; Choi J; Park J; Kong S; Park J; Goh J; Lee YH
    PLoS Genet; 2009 Dec; 5(12):e1000757. PubMed ID: 19997500
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MoSnt2-dependent deacetylation of histone H3 mediates MoTor-dependent autophagy and plant infection by the rice blast fungus Magnaporthe oryzae.
    He M; Xu Y; Chen J; Luo Y; Lv Y; Su J; Kershaw MJ; Li W; Wang J; Yin J; Zhu X; Liu X; Chern M; Ma B; Wang J; Qin P; Chen W; Wang Y; Wang W; Ren Z; Wu X; Li P; Li S; Peng Y; Lin F; Talbot NJ; Chen X
    Autophagy; 2018; 14(9):1543-1561. PubMed ID: 29929416
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.