These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 23935523)

  • 1. Computational identification of diverse mechanisms underlying transcription factor-DNA occupancy.
    Cheng Q; Kazemian M; Pham H; Blatti C; Celniker SE; Wolfe SA; Brodsky MH; Sinha S
    PLoS Genet; 2013; 9(8):e1003571. PubMed ID: 23935523
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A biophysical model for analysis of transcription factor interaction and binding site arrangement from genome-wide binding data.
    He X; Chen CC; Hong F; Fang F; Sinha S; Ng HH; Zhong S
    PLoS One; 2009 Dec; 4(12):e8155. PubMed ID: 19956545
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Widespread evidence of cooperative DNA binding by transcription factors in Drosophila development.
    Kazemian M; Pham H; Wolfe SA; Brodsky MH; Sinha S
    Nucleic Acids Res; 2013 Sep; 41(17):8237-52. PubMed ID: 23847101
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heterogeneity of transcription factor binding specificity models within and across cell lines.
    Sharmin M; Bravo HC; Hannenhalli S
    Genome Res; 2016 Aug; 26(8):1110-23. PubMed ID: 27311443
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High resolution models of transcription factor-DNA affinities improve in vitro and in vivo binding predictions.
    Agius P; Arvey A; Chang W; Noble WS; Leslie C
    PLoS Comput Biol; 2010 Sep; 6(9):. PubMed ID: 20838582
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A map of direct TF-DNA interactions in the human genome.
    Gheorghe M; Sandve GK; Khan A; Chèneby J; Ballester B; Mathelier A
    Nucleic Acids Res; 2019 Feb; 47(4):e21. PubMed ID: 30517703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonconsensus Protein Binding to Repetitive DNA Sequence Elements Significantly Affects Eukaryotic Genomes.
    Afek A; Cohen H; Barber-Zucker S; Gordân R; Lukatsky DB
    PLoS Comput Biol; 2015 Aug; 11(8):e1004429. PubMed ID: 26285121
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A New Mechanism for Mendelian Dominance in Regulatory Genetic Pathways: Competitive Binding by Transcription Factors.
    Porter AH; Johnson NA; Tulchinsky AY
    Genetics; 2017 Jan; 205(1):101-112. PubMed ID: 27866169
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessing the model transferability for prediction of transcription factor binding sites based on chromatin accessibility.
    Liu S; Zibetti C; Wan J; Wang G; Blackshaw S; Qian J
    BMC Bioinformatics; 2017 Jul; 18(1):355. PubMed ID: 28750606
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distinguishing direct versus indirect transcription factor-DNA interactions.
    Gordân R; Hartemink AJ; Bulyk ML
    Genome Res; 2009 Nov; 19(11):2090-100. PubMed ID: 19652015
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TFregulomeR reveals transcription factors' context-specific features and functions.
    Lin QXX; Thieffry D; Jha S; Benoukraf T
    Nucleic Acids Res; 2020 Jan; 48(2):e10. PubMed ID: 31754708
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA-dependent formation of transcription factor pairs alters their binding specificity.
    Jolma A; Yin Y; Nitta KR; Dave K; Popov A; Taipale M; Enge M; Kivioja T; Morgunova E; Taipale J
    Nature; 2015 Nov; 527(7578):384-8. PubMed ID: 26550823
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of chromatin accessibility in directing the widespread, overlapping patterns of Drosophila transcription factor binding.
    Li XY; Thomas S; Sabo PJ; Eisen MB; Stamatoyannopoulos JA; Biggin MD
    Genome Biol; 2011; 12(4):R34. PubMed ID: 21473766
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-targeted transcription factors motifs are a systemic component of ChIP-seq datasets.
    Worsley Hunt R; Wasserman WW
    Genome Biol; 2014 Jul; 15(7):412. PubMed ID: 25070602
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting transcription factor site occupancy using DNA sequence intrinsic and cell-type specific chromatin features.
    Kumar S; Bucher P
    BMC Bioinformatics; 2016 Jan; 17 Suppl 1(Suppl 1):4. PubMed ID: 26818008
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identifying cooperative transcription factors in yeast using multiple data sources.
    Lai FJ; Jhu MH; Chiu CC; Huang YM; Wu WS
    BMC Syst Biol; 2014; 8 Suppl 5(Suppl 5):S2. PubMed ID: 25559499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. COPS: detecting co-occurrence and spatial arrangement of transcription factor binding motifs in genome-wide datasets.
    Ha N; Polychronidou M; Lohmann I
    PLoS One; 2012; 7(12):e52055. PubMed ID: 23272209
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-Wide Analysis of ResD, NsrR, and Fur Binding in Bacillus subtilis during Anaerobic Fermentative Growth by
    Chumsakul O; Anantsri DP; Quirke T; Oshima T; Nakamura K; Ishikawa S; Nakano MM
    J Bacteriol; 2017 Jul; 199(13):. PubMed ID: 28439033
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An improved ChIP-seq peak detection system for simultaneously identifying post-translational modified transcription factors by combinatorial fusion, using SUMOylation as an example.
    Cheng CY; Chu CH; Hsu HW; Hsu FR; Tang CY; Wang WC; Kung HJ; Chang PC
    BMC Genomics; 2014; 15 Suppl 1(Suppl 1):S1. PubMed ID: 24564277
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcription-factor occupancy at HOT regions quantitatively predicts RNA polymerase recruitment in five human cell lines.
    Foley JW; Sidow A
    BMC Genomics; 2013 Oct; 14():720. PubMed ID: 24138567
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.