These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 23935704)

  • 1. Optimisation of ionic models to fit tissue action potentials: application to 3D atrial modelling.
    Al Abed A; Guo T; Lovell NH; Dokos S
    Comput Math Methods Med; 2013; 2013():951234. PubMed ID: 23935704
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An anatomically realistic 3d model of atrial propagation based on experimentally recorded action potentials.
    Abed AA; Guo T; Lovell NH; Dokos S
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():243-6. PubMed ID: 21096960
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimisation of a generic ionic model of cardiac myocyte electrical activity.
    Guo T; Al Abed A; Lovell NH; Dokos S
    Comput Math Methods Med; 2013; 2013():706195. PubMed ID: 23710254
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tissue-based optimization of a sino-atrial node disc model.
    Al Abed A; Guo T; Lovell NH; Dokos S
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1375-8. PubMed ID: 22254573
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study of cardiac pacemaker excitation using generic ionic models and realistic cell distribution.
    Bradd AD; Al Abed A; Guo T; Lovell NH; Dokos S
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():195-8. PubMed ID: 23365865
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A gradient model of cardiac pacemaker myocytes.
    Lovell NH; Cloherty SL; Celler BG; Dokos S
    Prog Biophys Mol Biol; 2004; 85(2-3):301-23. PubMed ID: 15142749
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heterogeneous three-dimensional anatomical and electrophysiological model of human atria.
    Seemann G; Höper C; Sachse FB; Dössel O; Holden AV; Zhang H
    Philos Trans A Math Phys Eng Sci; 2006 Jun; 364(1843):1465-81. PubMed ID: 16766355
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational assessment of the functional role of sinoatrial node exit pathways in the human heart.
    Kharche SR; Vigmond E; Efimov IR; Dobrzynski H
    PLoS One; 2017; 12(9):e0183727. PubMed ID: 28873427
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural and functional evidence for discrete exit pathways that connect the canine sinoatrial node and atria.
    Fedorov VV; Schuessler RB; Hemphill M; Ambrosi CM; Chang R; Voloshina AS; Brown K; Hucker WJ; Efimov IR
    Circ Res; 2009 Apr; 104(7):915-23. PubMed ID: 19246679
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D virtual human atria: A computational platform for studying clinical atrial fibrillation.
    Aslanidi OV; Colman MA; Stott J; Dobrzynski H; Boyett MR; Holden AV; Zhang H
    Prog Biophys Mol Biol; 2011 Oct; 107(1):156-68. PubMed ID: 21762716
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of atrium in automaticity of the sinus node.
    Zhang H; Li RJ; Huang X
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():47-50. PubMed ID: 26736197
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gap junction modifiers regulate electrical activities of the sinoatrial node and pulmonary vein: Therapeutic implications in atrial arrhythmogenesis.
    Chang CJ; Cheng CC; Chen YC; Kao YH; Chen SA; Chen YJ
    Int J Cardiol; 2016 Oct; 221():529-36. PubMed ID: 27414735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regional differences in rabbit atrial action potential properties: mechanisms, consequences and pharmacological implications.
    Aslanidi OV; Dewey RS; Morgan AR; Boyett MR; Zhang H
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():141-4. PubMed ID: 19162613
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pro-arrhythmogenic effects of atrial fibrillation-induced electrical remodelling: insights from the three-dimensional virtual human atria.
    Colman MA; Aslanidi OV; Kharche S; Boyett MR; Garratt C; Hancox JC; Zhang H
    J Physiol; 2013 Sep; 591(17):4249-72. PubMed ID: 23732649
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Morphological analysis of myocyte relationships in the sinoatrial node in rats.
    Sutiagin PV
    Bull Exp Biol Med; 2009 Nov; 148(5):834-7. PubMed ID: 20396805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of pacemaker activity of sinoatrial node cells by electrical load imposed by an atrial cell model.
    Watanabe EI; Honjo H; Anno T; Boyett MR; Kodama I; Toyama J
    Am J Physiol; 1995 Nov; 269(5 Pt 2):H1735-42. PubMed ID: 7503272
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational analysis of the human sinus node action potential: model development and effects of mutations.
    Fabbri A; Fantini M; Wilders R; Severi S
    J Physiol; 2017 Apr; 595(7):2365-2396. PubMed ID: 28185290
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Onset of atrial arrhythmias elicited by autonomic modulation of rabbit sinoatrial node activity: a modeling study.
    Muñoz MA; Kaur J; Vigmond EJ
    Am J Physiol Heart Circ Physiol; 2011 Nov; 301(5):H1974-83. PubMed ID: 21856904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distribution of atrial and nodal cells within the rabbit sinoatrial node: models of sinoatrial transition.
    Verheijck EE; Wessels A; van Ginneken AC; Bourier J; Markman MW; Vermeulen JL; de Bakker JM; Lamers WH; Opthof T; Bouman LN
    Circulation; 1998 Apr; 97(16):1623-31. PubMed ID: 9593568
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A compartmentalized mathematical model of mouse atrial myocytes.
    Asfaw TN; Tyan L; Glukhov AV; Bondarenko VE
    Am J Physiol Heart Circ Physiol; 2020 Mar; 318(3):H485-H507. PubMed ID: 31951471
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.