These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 23936181)
21. Cerebral regions and hemispheric specialization for processing spatial frequencies during natural scene recognition. An event-related fMRI study. Peyrin C; Baciu M; Segebarth C; Marendaz C Neuroimage; 2004 Oct; 23(2):698-707. PubMed ID: 15488419 [TBL] [Abstract][Full Text] [Related]
22. Influence of peripheral vision on object categorization in central vision. Roux-Sibilon A; Trouilloud A; Kauffmann L; Guyader N; Mermillod M; Peyrin C J Vis; 2019 Dec; 19(14):7. PubMed ID: 31826252 [TBL] [Abstract][Full Text] [Related]
23. Modulation of microsaccades by spatial frequency during object categorization. Craddock M; Oppermann F; Müller MM; Martinovic J Vision Res; 2017 Jan; 130():48-56. PubMed ID: 27876511 [TBL] [Abstract][Full Text] [Related]
24. ERP signs of categorical and supra-categorical processing of visual information. Zani A; Marsili G; Senerchia A; Orlandi A; Citron FM; Rizzi E; Proverbio AM Biol Psychol; 2015 Jan; 104():90-107. PubMed ID: 25447739 [TBL] [Abstract][Full Text] [Related]
26. Is that a belt or a snake? Object attentional selection affects the early stages of visual sensory processing. Zani A; Proverbio AM Behav Brain Funct; 2012 Feb; 8():6. PubMed ID: 22300540 [TBL] [Abstract][Full Text] [Related]
27. Neural and behavioral effects of subordinate-level training of novel objects across manipulations of color and spatial frequency. Jones T; Hadley H; Cataldo AM; Arnold E; Curran T; Tanaka JW; Scott LS Eur J Neurosci; 2020 Dec; 52(11):4468-4479. PubMed ID: 29499088 [TBL] [Abstract][Full Text] [Related]
28. Combining features from ERP components in single-trial EEG for discriminating four-category visual objects. Wang C; Xiong S; Hu X; Yao L; Zhang J J Neural Eng; 2012 Oct; 9(5):056013. PubMed ID: 22983495 [TBL] [Abstract][Full Text] [Related]
29. Residual abilities in age-related macular degeneration to process spatial frequencies during natural scene categorization. Musel B; Hera R; Chokron S; Alleysson D; Chiquet C; Romanet JP; Guyader N; Peyrin C Vis Neurosci; 2011 Nov; 28(6):529-41. PubMed ID: 22192508 [TBL] [Abstract][Full Text] [Related]
30. The Neural Bases of the Semantic Interference of Spatial Frequency-based Information in Scenes. Kauffmann L; Bourgin J; Guyader N; Peyrin C J Cogn Neurosci; 2015 Dec; 27(12):2394-405. PubMed ID: 26244724 [TBL] [Abstract][Full Text] [Related]
31. Low Spatial Frequency Bias in Schizophrenia is Not Face Specific: When the Integration of Coarse and Fine Information Fails. Laprevote V; Oliva A; Ternois AS; Schwan R; Thomas P; Boucart M Front Psychol; 2013; 4():248. PubMed ID: 23653616 [TBL] [Abstract][Full Text] [Related]
32. Object-sensitive activity reflects earlier perceptual and later cognitive processing of visual objects between 95 and 500ms. Schendan HE; Lucia LC Brain Res; 2010 May; 1329():124-41. PubMed ID: 20122902 [TBL] [Abstract][Full Text] [Related]
33. Coarse-to-fine categorization of visual scenes in scene-selective cortex. Musel B; Kauffmann L; Ramanoël S; Giavarini C; Guyader N; Chauvin A; Peyrin C J Cogn Neurosci; 2014 Oct; 26(10):2287-97. PubMed ID: 24738768 [TBL] [Abstract][Full Text] [Related]
34. ERP assessment of functional status in the temporal lobe: examining spatiotemporal correlates of object recognition. Mazerolle EL; D'Arcy RC; Marchand Y; Bolster RB Int J Psychophysiol; 2007 Oct; 66(1):81-92. PubMed ID: 17673323 [TBL] [Abstract][Full Text] [Related]
35. Sensory and semantic activations evoked by action attributes of manipulable objects: Evidence from ERPs. Lee CL; Huang HW; Federmeier KD; Buxbaum LJ Neuroimage; 2018 Feb; 167():331-341. PubMed ID: 29183777 [TBL] [Abstract][Full Text] [Related]
36. Scene perception in age-related macular degeneration: Effect of spatial frequencies and contrast in residual vision. Peyrin C; Ramanoël S; Roux-Sibilon A; Chokron S; Hera R Vision Res; 2017 Jan; 130():36-47. PubMed ID: 27876510 [TBL] [Abstract][Full Text] [Related]
37. Processing of visual hapaxes in picture naming task: An event-related potential study. Jovanović V; Petrušić I; Savić A; Ković V Int J Psychophysiol; 2024 Sep; 203():112394. PubMed ID: 39053735 [TBL] [Abstract][Full Text] [Related]
38. Task difficulty modulates electrophysiological correlates of perceptual learning. Wang Y; Song Y; Qu Z; Ding Y Int J Psychophysiol; 2010 Mar; 75(3):234-40. PubMed ID: 19969030 [TBL] [Abstract][Full Text] [Related]
39. Spatial frequency tuning of motor responses reveals differential contribution of dorsal and ventral systems to action comprehension. Amoruso L; Finisguerra A; Urgesi C Proc Natl Acad Sci U S A; 2020 Jun; 117(23):13151-13161. PubMed ID: 32457158 [TBL] [Abstract][Full Text] [Related]
40. Brain dynamics of upstream perceptual processes leading to visual object recognition: a high density ERP topographic mapping study. Schettino A; Loeys T; Delplanque S; Pourtois G Neuroimage; 2011 Apr; 55(3):1227-41. PubMed ID: 21237274 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]