These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 23936339)
1. New empirical equation for the atomic form factor function in the momentum transfer range, q=0-50 Å(-1) for the elements in the range 1 ≤ Z ≤ 30. Muhammad W; Lee SH PLoS One; 2013; 8(8):e69608. PubMed ID: 23936339 [TBL] [Abstract][Full Text] [Related]
2. Source of statistical noises in the Monte Carlo sampling techniques for coherently scattered photons. Muhammad W; Lee SH J Radiat Res; 2013 Jan; 54(1):190-201. PubMed ID: 22984278 [TBL] [Abstract][Full Text] [Related]
3. Extending the IAEA-AAPM TRS-483 methodology for radiation therapy machines with field sizes down to 10 × 2 cm Mirzakhanian L; Bassalow R; Huntzinger C; Seuntjens J Med Phys; 2020 Oct; 47(10):5209-5221. PubMed ID: 32815187 [TBL] [Abstract][Full Text] [Related]
4. A study of effective atomic number and electron density of gel dosimeters and human tissues for scattering of gamma rays: momentum transfer, energy and scattering angle dependence. Kurudirek M Radiat Environ Biophys; 2016 Nov; 55(4):501-507. PubMed ID: 27568398 [TBL] [Abstract][Full Text] [Related]
5. Monte Carlo simulation of coherently scattered photons based on the inverse-sampling technique. Muhammad W; Liang Y; Hart GR; Nartowt BJ; Deng J Acta Crystallogr A Found Adv; 2020 Jan; 76(Pt 1):70-78. PubMed ID: 31908350 [TBL] [Abstract][Full Text] [Related]
6. Determination of the photon spectrum of a therapeutic linear accelerator near the maze entrance: Comparison of Monte Carlo modeling and measurements using scintillation detectors corrected for pulse pile-up. Qutub MAZ; Hugtenburg RP; Al-Affan IAM Med Phys; 2020 Sep; 47(9):4522-4530. PubMed ID: 32469079 [TBL] [Abstract][Full Text] [Related]
7. Analytical equations for CT dose profiles derived using a scatter kernel of Monte Carlo parentage with broad applicability to CT dosimetry problems. Dixon RL; Boone JM Med Phys; 2011 Jul; 38(7):4251-64. PubMed ID: 21859027 [TBL] [Abstract][Full Text] [Related]
8. Photon scattering in biomedically important elements. Bradley DA; Ghose AM Phys Med Biol; 1984 Nov; 29(11):1385-97. PubMed ID: 6505018 [TBL] [Abstract][Full Text] [Related]
9. Spatial frequency spectrum of the x-ray scatter distribution in CBCT projections. Bootsma GJ; Verhaegen F; Jaffray DA Med Phys; 2013 Nov; 40(11):111901. PubMed ID: 24320434 [TBL] [Abstract][Full Text] [Related]
10. IAEA-AAPM TRS-483-based reference dosimetry of the new RefleXion biology-guided radiotherapy (BgRT) machine. Mirzakhanian L; Bassalow R; Zaks D; Huntzinger C; Seuntjens J Med Phys; 2021 Apr; 48(4):1884-1892. PubMed ID: 33296515 [TBL] [Abstract][Full Text] [Related]
11. Modeling granular phosphor screens by Monte Carlo methods. Liaparinos PF; Kandarakis IS; Cavouras DA; Delis HB; Panayiotakis GS Med Phys; 2006 Dec; 33(12):4502-14. PubMed ID: 17278802 [TBL] [Abstract][Full Text] [Related]
12. Monte Carlo simulation of multiple scattering in Compton spectroscopy. Persliden J Acta Radiol; 1992 Jul; 33(4):384-7. PubMed ID: 1633052 [TBL] [Abstract][Full Text] [Related]
13. The significance of electron binding corrections in Monte Carlo photon transport calculations. Williamson JF; Deibel FC; Morin RL Phys Med Biol; 1984 Sep; 29(9):1063-73. PubMed ID: 6483972 [TBL] [Abstract][Full Text] [Related]
14. Molecular coherent scattering data for tissue in photon transport Monte Carlo codes. Tartari A; Bonifazzi C; Fernandez JE; Bastiano M; Casnati E; Baraldi C; Di Domenico G Appl Radiat Isot; 2000; 53(4-5):901-6. PubMed ID: 11003539 [TBL] [Abstract][Full Text] [Related]
15. Acuros CTS: A fast, linear Boltzmann transport equation solver for computed tomography scatter - Part I: Core algorithms and validation. Maslowski A; Wang A; Sun M; Wareing T; Davis I; Star-Lack J Med Phys; 2018 May; 45(5):1899-1913. PubMed ID: 29509970 [TBL] [Abstract][Full Text] [Related]
16. Monte Carlo calculations of kQ, the beam quality conversion factor. Muir BR; Rogers DW Med Phys; 2010 Nov; 37(11):5939-50. PubMed ID: 21158307 [TBL] [Abstract][Full Text] [Related]
17. Diffuse photon density wave measurements and Monte Carlo simulations. Kuzmin VL; Neidrauer MT; Diaz D; Zubkov LA J Biomed Opt; 2015 Oct; 20(10):105006. PubMed ID: 26465614 [TBL] [Abstract][Full Text] [Related]
18. Calculation of the small-angle distribution of scattered photons in diagnostic radiology using a Monte Carlo collision density estimator. Persliden J; Carlsson GA Med Phys; 1986; 13(1):19-24. PubMed ID: 3951405 [TBL] [Abstract][Full Text] [Related]
19. Modelling the elastic scattering in diagnostic radiology: the importance of structure form factors. Cardoso SC; Gonçalves OD; Schechter H; Eichler J Phys Med Biol; 2003 Jul; 48(13):1907-16. PubMed ID: 12884924 [TBL] [Abstract][Full Text] [Related]
20. A new concept of pencil beam dose calculation for 40-200 keV photons using analytical dose kernels. Bartzsch S; Oelfke U Med Phys; 2013 Nov; 40(11):111714. PubMed ID: 24320422 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]