BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 23936349)

  • 1. Directly writing resistor, inductor and capacitor to composite functional circuits: a super-simple way for alternative electronics.
    Gao Y; Li H; Liu J
    PLoS One; 2013; 8(8):e69761. PubMed ID: 23936349
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct writing of flexible electronics through room temperature liquid metal ink.
    Gao Y; Li H; Liu J
    PLoS One; 2012; 7(9):e45485. PubMed ID: 23029044
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Personal electronics printing via tapping mode composite liquid metal ink delivery and adhesion mechanism.
    Zheng Y; He ZZ; Yang J; Liu J
    Sci Rep; 2014 Apr; 4():4588. PubMed ID: 24699375
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydroprinted Electronics: Ultrathin Stretchable Ag-In-Ga E-Skin for Bioelectronics and Human-Machine Interaction.
    Lopes PA; Paisana H; De Almeida AT; Majidi C; Tavakoli M
    ACS Appl Mater Interfaces; 2018 Nov; 10(45):38760-38768. PubMed ID: 30338978
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomedical implementation of liquid metal ink as drawable ECG electrode and skin circuit.
    Yu Y; Zhang J; Liu J
    PLoS One; 2013; 8(3):e58771. PubMed ID: 23472220
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Printing low-melting-point alloy ink to directly make a solidified circuit or functional device with a heating pen.
    Wang L; Liu J
    Proc Math Phys Eng Sci; 2014 Dec; 470(2172):20140609. PubMed ID: 25484611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct Wiring of Eutectic Gallium-Indium to a Metal Electrode for Soft Sensor Systems.
    Kim S; Oh J; Jeong D; Bae J
    ACS Appl Mater Interfaces; 2019 Jun; 11(22):20557-20565. PubMed ID: 31066540
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bi-Phasic Ag-In-Ga-Embedded Elastomer Inks for Digitally Printed, Ultra-Stretchable, Multi-layer Electronics.
    Lopes PA; Fernandes DF; Silva AF; Marques DG; de Almeida AT; Majidi C; Tavakoli M
    ACS Appl Mater Interfaces; 2021 Mar; 13(12):14552-14561. PubMed ID: 33689286
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent Advancements in Liquid Metal Flexible Printed Electronics: Properties, Technologies, and Applications.
    Wang X; Liu J
    Micromachines (Basel); 2016 Nov; 7(12):. PubMed ID: 30404387
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Natural gum-based electronic ink with water-proofing self-healing and easy-cleaning properties for directly on-skin electronics.
    Huang H; Feng Y; Yang X; Shen Y
    Biosens Bioelectron; 2022 Oct; 214():114547. PubMed ID: 35820252
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct Pen Writing of Adhesive Particle-Free Ultrahigh Silver Salt-Loaded Composite Ink for Stretchable Circuits.
    Hu M; Cai X; Guo Q; Bian B; Zhang T; Yang J
    ACS Nano; 2016 Jan; 10(1):396-404. PubMed ID: 26624508
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Environmentally stable MXene ink for direct writing flexible electronics.
    Kong N; Zhang J; Hegh D; Usman KAS; Qin S; Lynch PA; Yang W; Razal JM
    Nanoscale; 2022 May; 14(17):6299-6304. PubMed ID: 35420082
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High performance flexible electronics for biomedical devices.
    Salvatore GA; Munzenrieder N; Zysset C; Kinkeldei T; Petti L; Troster G
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():4176-9. PubMed ID: 25570912
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hybrid Transfer Printing of Liquid Metals and Allied Inks for Rapid Fabrication of Multifunctional Soft Electronics.
    Zhou Z; Yu Y; Xu G; Liu J; Wang Q
    ACS Appl Mater Interfaces; 2024 May; 16(19):25589-25599. PubMed ID: 38696218
    [TBL] [Abstract][Full Text] [Related]  

  • 15. UV Curable Conductive Ink for the Fabrication of Textile-Based Conductive Circuits and Wearable UHF RFID Tags.
    Hong H; Hu J; Yan X
    ACS Appl Mater Interfaces; 2019 Jul; 11(30):27318-27326. PubMed ID: 31284718
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Next generation non-vacuum, maskless, low temperature nanoparticle ink laser digital direct metal patterning for a large area flexible electronics.
    Yeo J; Hong S; Lee D; Hotz N; Lee MT; Grigoropoulos CP; Ko SH
    PLoS One; 2012; 7(8):e42315. PubMed ID: 22900011
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapidly patterning conductive components on skin substrates as physiological testing devices via liquid metal spraying and pre-designed mask.
    Guo C; Yu Y; Liu J
    J Mater Chem B; 2014 Sep; 2(35):5739-5745. PubMed ID: 32262017
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increasing signal amplitude in electrical impedance tomography of neural activity using a parallel resistor inductor capacitor (RLC) circuit.
    Hope J; Aqrawe Z; Lim M; Vanholsbeeck F; McDaid A
    J Neural Eng; 2019 Nov; 16(6):066041. PubMed ID: 31536974
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Printed Graphene Derivative Circuits as Passive Electrical Filters.
    Sinar D; Knopf GK
    Nanomaterials (Basel); 2018 Feb; 8(2):. PubMed ID: 29473890
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ag-graphene hybrid conductive ink for writing electronics.
    Xu LY; Yang GY; Jing HY; Wei J; Han YD
    Nanotechnology; 2014 Feb; 25(5):055201. PubMed ID: 24406681
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.