BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 23936349)

  • 21. Water-soluble thin film transistors and circuits based on amorphous indium-gallium-zinc oxide.
    Jin SH; Kang SK; Cho IT; Han SY; Chung HU; Lee DJ; Shin J; Baek GW; Kim TI; Lee JH; Rogers JA
    ACS Appl Mater Interfaces; 2015 Apr; 7(15):8268-74. PubMed ID: 25805699
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Naturally Crosslinked Biocompatible Carbonaceous Liquid Metal Aqueous Ink Printing Wearable Electronics for Multi-Sensing and Energy Harvesting.
    Chung KY; Xu B; Tan D; Yang Q; Li Z; Fu H
    Nanomicro Lett; 2024 Mar; 16(1):149. PubMed ID: 38466478
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Control of Direct Written Ink Droplets Using Electrowetting.
    Plog J; Löwe JM; Jiang Y; Pan Y; Yarin AL
    Langmuir; 2019 Aug; 35(34):11023-11036. PubMed ID: 31345035
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Direct Writing on Paper Substrate to Prepare Silver Electrode Structures for Flexible Sensors.
    Wang Q; Li M; Xie Y; Ou Y; Zhou W
    J Nanosci Nanotechnol; 2021 Dec; 21(12):6048-6053. PubMed ID: 34229803
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Air-Stable Conductive Polymer Ink for Printed Wearable Micro-Supercapacitors.
    Chu X; Chen G; Xiao X; Wang Z; Yang T; Xu Z; Huang H; Wang Y; Yan C; Chen N; Zhang H; Yang W; Chen J
    Small; 2021 Jun; 17(25):e2100956. PubMed ID: 34018685
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Stretchable, Skin-Attachable Electronics with Integrated Energy Storage Devices for Biosignal Monitoring.
    Jeong YR; Lee G; Park H; Ha JS
    Acc Chem Res; 2019 Jan; 52(1):91-99. PubMed ID: 30586283
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Recyclable Thin-Film Soft Electronics for Smart Packaging and E-Skins.
    Reis Carneiro M; de Almeida AT; Tavakoli M; Majidi C
    Adv Sci (Weinh); 2023 Sep; 10(26):e2301673. PubMed ID: 37436091
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Fast and Cost-Effective Transfer Printing of Liquid Metal Inks for Three-Dimensional Wiring in Flexible Electronics.
    Zhao R; Guo R; Xu X; Liu J
    ACS Appl Mater Interfaces; 2020 Aug; 12(32):36723-36730. PubMed ID: 32660242
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Study of Copper-Nickel Nanoparticle Resistive Ink Compatible with Printed Copper Films for Power Electronics Applications.
    Hlina J; Reboun J; Hamacek A
    Materials (Basel); 2021 Nov; 14(22):. PubMed ID: 34832439
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fabrication of High-Resolution Flexible Circuits and Sensors Based on Liquid Metal Inks by Spraying and Wiping Processing.
    Ren Y; Wang X; Liu J
    IEEE Trans Biomed Circuits Syst; 2019 Dec; 13(6):1545-1551. PubMed ID: 31425049
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electroless Deposition-Assisted 3D Printing of Micro Circuitries for Structural Electronics.
    Lee S; Wajahat M; Kim JH; Pyo J; Chang WS; Cho SH; Kim JT; Seol SK
    ACS Appl Mater Interfaces; 2019 Feb; 11(7):7123-7130. PubMed ID: 30681321
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Conductive Ink with Circular Life Cycle for Printed Electronics.
    Kwon J; DelRe C; Kang P; Hall A; Arnold D; Jayapurna I; Ma L; Michalek M; Ritchie RO; Xu T
    Adv Mater; 2022 Jul; 34(30):e2202177. PubMed ID: 35580071
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Silver nanoparticle conductive inks: synthesis, characterization, and fabrication of inkjet-printed flexible electrodes.
    Fernandes IJ; Aroche AF; Schuck A; Lamberty P; Peter CR; Hasenkamp W; Rocha TLAC
    Sci Rep; 2020 Jun; 10(1):8878. PubMed ID: 32483302
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Liquid Metal Microgels for Three-Dimensional Printing of Smart Electronic Clothes.
    Wu P; Fu J; Xu Y; He Y
    ACS Appl Mater Interfaces; 2022 Mar; 14(11):13458-13467. PubMed ID: 35258916
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synthesis and characterizations of ternary InGaAs nanowires by a two-step growth method for high-performance electronic devices.
    Hou JJ; Han N; Wang F; Xiu F; Yip S; Hui AT; Hung T; Ho JC
    ACS Nano; 2012 Apr; 6(4):3624-30. PubMed ID: 22443352
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sensing extremely limited H₂ contents by Pd nanogap connected to an amorphous InGaZnO thin-film transistor.
    Lee YT; Jung H; Nam SH; Jeon PJ; Kim JS; Jang B; Lee W; Im S
    Nanoscale; 2013 Oct; 5(19):8915-20. PubMed ID: 23942638
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Low-Cost Fabrication of Printed Electronics Devices through Continuous Wave Laser-Induced Forward Transfer.
    Sopeña P; Arrese J; González-Torres S; Fernández-Pradas JM; Cirera A; Serra P
    ACS Appl Mater Interfaces; 2017 Sep; 9(35):29412-29417. PubMed ID: 28832108
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Body-temperature softening electronic ink for additive manufacturing of transformative bioelectronics via direct writing.
    Kwon DA; Lee S; Kim CY; Kang I; Park S; Jeong JW
    Sci Adv; 2024 Mar; 10(9):eadn1186. PubMed ID: 38416839
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Towards plant wires.
    Adamatzky A
    Biosystems; 2014 Aug; 122():1-6. PubMed ID: 24928068
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Toward printed integrated circuits based on unipolar or ambipolar polymer semiconductors.
    Baeg KJ; Caironi M; Noh YY
    Adv Mater; 2013 Aug; 25(31):4210-44. PubMed ID: 23761043
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.