BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 23936349)

  • 41. Robust Design of a Particle-Free Silver-Organo-Complex Ink with High Conductivity and Inkjet Stability for Flexible Electronics.
    Vaseem M; McKerricher G; Shamim A
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):177-86. PubMed ID: 26713357
    [TBL] [Abstract][Full Text] [Related]  

  • 42. High-Resolution Rapid Prototyping of Liquid Metal Electronics by Direct Writing on Highly Prestretched Substrates.
    Liang B; Wei J; Fang L; Cao Q; Tu T; Ren H; Ye X
    ACS Omega; 2019 Dec; 4(25):21072-21077. PubMed ID: 31867499
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Dispensing of high concentration Ag nano-particles ink for ultra-low resistivity paper-based writing electronics.
    Wang F; Mao P; He H
    Sci Rep; 2016 Feb; 6():21398. PubMed ID: 26883558
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Alkylamine capped metal nanoparticle "inks" for printable SERS substrates, electronics and broadband photodetectors.
    Polavarapu L; Manga KK; Yu K; Ang PK; Cao HD; Balapanuru J; Loh KP; Xu QH
    Nanoscale; 2011 May; 3(5):2268-74. PubMed ID: 21491022
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Liquid-Metal Enabled Droplet Circuits.
    Ren Y; Liu J
    Micromachines (Basel); 2018 May; 9(5):. PubMed ID: 30424151
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Monolithic metal oxide transistors.
    Choi Y; Park WY; Kang MS; Yi GR; Lee JY; Kim YH; Cho JH
    ACS Nano; 2015 Apr; 9(4):4288-95. PubMed ID: 25777338
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Coexistence of high performance resistance and capacitance memory based on multilayered metal-oxide structures.
    Yan ZB; Liu JM
    Sci Rep; 2013; 3():2482. PubMed ID: 23963467
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Dual Surface Architectonics for Directed Self-Assembly of Ultrahigh-Resolution Electronics.
    Li L; Li W; Sun Q; Liu X; Jiu J; Tenjimbayashi M; Kanehara M; Nakayama T; Minari T
    Small; 2021 Jul; 17(26):e2101754. PubMed ID: 33988898
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Rewritable, Printable Conducting Liquid Metal Hydrogel.
    Park JE; Kang HS; Baek J; Park TH; Oh S; Lee H; Koo M; Park C
    ACS Nano; 2019 Aug; 13(8):9122-9130. PubMed ID: 31407567
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Liquid-phase gallium-indium alloy electronics with microcontact printing.
    Tabatabai A; Fassler A; Usiak C; Majidi C
    Langmuir; 2013 May; 29(20):6194-200. PubMed ID: 23659455
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Printable conductive inks used for the fabrication of electronics: an overview.
    Dimitriou E; Michailidis N
    Nanotechnology; 2021 Oct; 32(50):. PubMed ID: 33735843
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Nanolasers grown on silicon-based MOSFETs.
    Lu F; Tran TT; Ko WS; Ng KW; Chen R; Chang-Hasnain C
    Opt Express; 2012 May; 20(11):12171-6. PubMed ID: 22714204
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Multichannel power electronics and magnetic nanoparticles for selective thermal magnetogenetics.
    Wang B; Li Z; Sebesta C; Torres Hinojosa D; Zhang Q; Robinson JT; Bao G; Peterchev AV; Goetz SM
    J Neural Eng; 2022 Mar; 19(2):. PubMed ID: 35259729
    [No Abstract]   [Full Text] [Related]  

  • 54. Versatile Movements of Liquid Metal Droplet under Electrostatic Actuation in Alkaline Solutions.
    Hu Q; Jiang T; Jiang H
    Materials (Basel); 2020 May; 13(9):. PubMed ID: 32375247
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Gigahertz Electromagnetic Structures via Direct Ink Writing for Radio-Frequency Oscillator and Transmitter Applications.
    Zhou N; Liu C; Lewis JA; Ham D
    Adv Mater; 2017 Apr; 29(15):. PubMed ID: 28198059
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Harnessing the Rheological Properties of Liquid Metals To Shape Soft Electronic Conductors for Wearable Applications.
    Hirsch A; Dejace L; Michaud HO; Lacour SP
    Acc Chem Res; 2019 Mar; 52(3):534-544. PubMed ID: 30714364
    [TBL] [Abstract][Full Text] [Related]  

  • 57. An MRI receiver coil produced by inkjet printing directly on to a flexible substrate.
    Mager D; Peter A; Tin LD; Fischer E; Smith PJ; Hennig J; Korvink JG
    IEEE Trans Med Imaging; 2010 Feb; 29(2):482-7. PubMed ID: 20129848
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Flexible and stretchable metal oxide nanofiber networks for multimodal and monolithically integrated wearable electronics.
    Wang B; Thukral A; Xie Z; Liu L; Zhang X; Huang W; Yu X; Yu C; Marks TJ; Facchetti A
    Nat Commun; 2020 May; 11(1):2405. PubMed ID: 32415064
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Using liquid metal alloy (EGaIn) to electrochemically enhance SS stimulation electrodes for biobotic applications.
    Latif T; Fengyuan Gong ; Dickey M; Sichitiu M; Bozkurt A
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():2141-2144. PubMed ID: 28268755
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Stable and Biocompatible Carbon Nanotube Ink Mediated by Silk Protein for Printed Electronics.
    Liang X; Li H; Dou J; Wang Q; He W; Wang C; Li D; Lin JM; Zhang Y
    Adv Mater; 2020 Aug; 32(31):e2000165. PubMed ID: 32583914
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.