BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 23936349)

  • 61. Stable and Biocompatible Carbon Nanotube Ink Mediated by Silk Protein for Printed Electronics.
    Liang X; Li H; Dou J; Wang Q; He W; Wang C; Li D; Lin JM; Zhang Y
    Adv Mater; 2020 Aug; 32(31):e2000165. PubMed ID: 32583914
    [TBL] [Abstract][Full Text] [Related]  

  • 62. The fabrication of highly conductive and flexible Ag patterning through baking Ag nanosphere-nanoplate hybrid ink at a low temperature of 100 °C.
    Han YD; Zhang SM; Jing HY; Wei J; Bu FH; Zhao L; Lv XQ; Xu LY
    Nanotechnology; 2018 Apr; 29(13):135301. PubMed ID: 29432209
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Liquid micro-lens array activated by selective electrowetting on lithium niobate substrates.
    Grilli S; Miccio L; Vespini V; Finizio A; De Nicola S; Ferraro P
    Opt Express; 2008 May; 16(11):8084-93. PubMed ID: 18545521
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Sustainable paper electronics and neuromorphic paper chip.
    Xu N; Lin X; Han J; Sun Q
    Nanotechnology; 2024 Mar; 35(22):. PubMed ID: 38387096
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Sacrificial gold coating enhances transport of liquid metal in pressurized fountain pen lithography.
    Livshits GI; Bao J; Sakamoto L; Misaka T; Usami Y; Otsuka Y; Matsumoto T
    Sci Rep; 2021 Feb; 11(1):4670. PubMed ID: 33633292
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The influence of printed electronics on the recyclability of paper: a case study for smart envelopes in courier and postal services.
    Aliaga C; Zhang H; Dobon A; Hortal M; Beneventi D
    Waste Manag; 2015 Apr; 38():41-8. PubMed ID: 25649917
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Tailor-Made Engineering of Bioinspired Inks for Writing Barcode-like Multifunctional Sensory Electronics.
    Zhang M; Fan YL; Lu YF; Ding XY; Lin ZY; Shi G; Wu W; Haick H
    ACS Sens; 2019 Oct; 4(10):2588-2592. PubMed ID: 31613098
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Nanometer Sized Direct Laser-Induced Gold Printing for Precise 2D-Electronic Device Fabrication.
    Geladari O; Eberle M; Maier A; Fetzer F; Chassé T; Meixner AJ; Scheele M; Schnepf A; Braun K
    Small Methods; 2023 Jul; 7(7):e2201221. PubMed ID: 37171792
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Fully Printed μ-Needle Electrode Array from Conductive Polymer Ink for Bioelectronic Applications.
    Zips S; Grob L; Rinklin P; Terkan K; Adly NY; Weiß LJK; Mayer D; Wolfrum B
    ACS Appl Mater Interfaces; 2019 Sep; 11(36):32778-32786. PubMed ID: 31424902
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Stencil Printing of Liquid Metal upon Electrospun Nanofibers Enables High-Performance Flexible Electronics.
    Wang M; Ma C; Uzabakiriho PC; Chen X; Chen Z; Cheng Y; Wang Z; Zhao G
    ACS Nano; 2021 Dec; 15(12):19364-19376. PubMed ID: 34783541
    [TBL] [Abstract][Full Text] [Related]  

  • 71. The fundamental operating principles of electronic root canal length measurement devices.
    Nekoofar MH; Ghandi MM; Hayes SJ; Dummer PM
    Int Endod J; 2006 Aug; 39(8):595-609. PubMed ID: 16872454
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Decision trees within a molecular memristor.
    Goswami S; Pramanick R; Patra A; Rath SP; Foltin M; Ariando A; Thompson D; Venkatesan T; Goswami S; Williams RS
    Nature; 2021 Sep; 597(7874):51-56. PubMed ID: 34471273
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Fabrication of Transparent Multilayer Circuits by Inkjet Printing.
    Jiang J; Bao B; Li M; Sun J; Zhang C; Li Y; Li F; Yao X; Song Y
    Adv Mater; 2016 Feb; 28(7):1420-6. PubMed ID: 26643356
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Injectable 3-D fabrication of medical electronics at the target biological tissues.
    Jin C; Zhang J; Li X; Yang X; Li J; Liu J
    Sci Rep; 2013 Dec; 3():3442. PubMed ID: 24309385
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Solution processed aluminum paper for flexible electronics.
    Lee HM; Lee HB; Jung DS; Yun JY; Ko SH; Park SB
    Langmuir; 2012 Sep; 28(36):13127-35. PubMed ID: 22873281
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Direct-Writing Flexible Metal Circuit with Polymer/Metal Precursor Ink and Interfacial Reaction.
    Sun R; Ma M; Ma X; Kang H; Wang S; Sun J
    Langmuir; 2023 May; 39(21):7426-7433. PubMed ID: 37192423
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Screen printed passive components for flexible power electronics.
    Ostfeld AE; Deckman I; Gaikwad AM; Lochner CM; Arias AC
    Sci Rep; 2015 Oct; 5():15959. PubMed ID: 26514331
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Versatile carbon-loaded shellac ink for disposable printed electronics.
    Poulin A; Aeby X; Siqueira G; Nyström G
    Sci Rep; 2021 Dec; 11(1):23784. PubMed ID: 34893650
    [TBL] [Abstract][Full Text] [Related]  

  • 79. High-Purity Semiconducting Single-Walled Carbon Nanotubes: A Key Enabling Material in Emerging Electronics.
    Lefebvre J; Ding J; Li Z; Finnie P; Lopinski G; Malenfant PRL
    Acc Chem Res; 2017 Oct; 50(10):2479-2486. PubMed ID: 28902990
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Screen-Printing of a Highly Conductive Graphene Ink for Flexible Printed Electronics.
    He P; Cao J; Ding H; Liu C; Neilson J; Li Z; Kinloch IA; Derby B
    ACS Appl Mater Interfaces; 2019 Sep; 11(35):32225-32234. PubMed ID: 31390171
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.