BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 23936429)

  • 1. Genome-wide expression of transcriptomes and their co-expression pattern in subtropical maize (Zea mays L.) under waterlogging stress.
    Thirunavukkarasu N; Hossain F; Mohan S; Shiriga K; Mittal S; Sharma R; Singh RK; Gupta HS
    PLoS One; 2013; 8(8):e70433. PubMed ID: 23936429
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Comprehensive Transcriptomics Analysis Reveals Long Non-Coding RNA to be Involved in the Key Metabolic Pathway in Response to Waterlogging Stress in Maize.
    Yu F; Tan Z; Fang T; Tang K; Liang K; Qiu F
    Genes (Basel); 2020 Feb; 11(3):. PubMed ID: 32121334
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional mechanisms of drought tolerance in subtropical maize (Zea mays L.) identified using genome-wide association mapping.
    Thirunavukkarasu N; Hossain F; Arora K; Sharma R; Shiriga K; Mittal S; Mohan S; Namratha PM; Dogga S; Rani TS; Katragadda S; Rathore A; Shah T; Mohapatra T; Gupta HS
    BMC Genomics; 2014 Dec; 15(1):1182. PubMed ID: 25539911
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcript profiles in cortical cells of maize primary root during ethylene-induced lysigenous aerenchyma formation under aerobic conditions.
    Takahashi H; Yamauchi T; Rajhi I; Nishizawa NK; Nakazono M
    Ann Bot; 2015 May; 115(6):879-94. PubMed ID: 25858325
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative transcriptomic and physiological analyses of contrasting hybrid cultivars ND476 and ZX978 identify important differentially expressed genes and pathways regulating drought stress tolerance in maize.
    Liu G; Zenda T; Liu S; Wang X; Jin H; Dong A; Yang Y; Duan H
    Genes Genomics; 2020 Aug; 42(8):937-955. PubMed ID: 32623576
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of candidate genes for drought tolerance by whole-genome resequencing in maize.
    Xu J; Yuan Y; Xu Y; Zhang G; Guo X; Wu F; Wang Q; Rong T; Pan G; Cao M; Tang Q; Gao S; Liu Y; Wang J; Lan H; Lu Y
    BMC Plant Biol; 2014 Apr; 14():83. PubMed ID: 24684805
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissecting the genetic architecture of waterlogging stress-related traits uncovers a key waterlogging tolerance gene in maize.
    Yu F; Liang K; Zhang Z; Du D; Zhang X; Zhao H; Ui Haq B; Qiu F
    Theor Appl Genet; 2018 Nov; 131(11):2299-2310. PubMed ID: 30062652
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of differentially expressed genes between sorghum genotypes with contrasting nitrogen stress tolerance by genome-wide transcriptional profiling.
    Gelli M; Duo Y; Konda AR; Zhang C; Holding D; Dweikat I
    BMC Genomics; 2014 Mar; 15():179. PubMed ID: 24597475
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of transcriptome induced in roots of maize seedlings at the late stage of waterlogging.
    Zou X; Jiang Y; Liu L; Zhang Z; Zheng Y
    BMC Plant Biol; 2010 Aug; 10():189. PubMed ID: 20738849
    [TBL] [Abstract][Full Text] [Related]  

  • 10. QTL mapping of agronomic waterlogging tolerance using recombinant inbred lines derived from tropical maize (Zea mays L) germplasm.
    Zaidi PH; Rashid Z; Vinayan MT; Almeida GD; Phagna RK; Babu R
    PLoS One; 2015; 10(4):e0124350. PubMed ID: 25884393
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential expression of leaf proteome of tolerant and susceptible maize (
    Rafique S
    Biochem Cell Biol; 2019 Oct; 97(5):581-588. PubMed ID: 30807207
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tolerant and Susceptible Sesame Genotypes Reveal Waterlogging Stress Response Patterns.
    Wang L; Li D; Zhang Y; Gao Y; Yu J; Wei X; Zhang X
    PLoS One; 2016; 11(3):e0149912. PubMed ID: 26934874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RNAseq revealed the important gene pathways controlling adaptive mechanisms under waterlogged stress in maize.
    Arora K; Panda KK; Mittal S; Mallikarjuna MG; Rao AR; Dash PK; Thirunavukkarasu N
    Sci Rep; 2017 Sep; 7(1):10950. PubMed ID: 28887464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome-wide association analysis of salt tolerance QTLs with SNP markers in maize (Zea mays L.).
    Xie Y; Feng Y; Chen Q; Zhao F; Zhou S; Ding Y; Song X; Li P; Wang B
    Genes Genomics; 2019 Oct; 41(10):1135-1145. PubMed ID: 31243730
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physiological and de novo transcriptome analysis of the fermentation mechanism of Cerasus sachalinensis roots in response to short-term waterlogging.
    Zhang P; Lyu D; Jia L; He J; Qin S
    BMC Genomics; 2017 Aug; 18(1):649. PubMed ID: 28830345
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An updated gene atlas for maize reveals organ-specific and stress-induced genes.
    Hoopes GM; Hamilton JP; Wood JC; Esteban E; Pasha A; Vaillancourt B; Provart NJ; Buell CR
    Plant J; 2019 Mar; 97(6):1154-1167. PubMed ID: 30537259
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome expression profile analysis reveals important transcripts in maize roots responding to the stress of heavy metal Pb.
    Shen Y; Zhang Y; Chen J; Lin H; Zhao M; Peng H; Liu L; Yuan G; Zhang S; Zhang Z; Pan G
    Physiol Plant; 2013 Mar; 147(3):270-82. PubMed ID: 22747913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-wide association study dissects the genetic bases of salt tolerance in maize seedlings.
    Luo X; Wang B; Gao S; Zhang F; Terzaghi W; Dai M
    J Integr Plant Biol; 2019 Jun; 61(6):658-674. PubMed ID: 30803125
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stress-induced and epigenetic-mediated maize transcriptome regulation study by means of transcriptome reannotation and differential expression analysis.
    Forestan C; Aiese Cigliano R; Farinati S; Lunardon A; Sanseverino W; Varotto S
    Sci Rep; 2016 Jul; 6():30446. PubMed ID: 27461139
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Key Maize Drought-Responsive Genes and Pathways Revealed by Comparative Transcriptome and Physiological Analyses of Contrasting Inbred Lines.
    Zenda T; Liu S; Wang X; Liu G; Jin H; Dong A; Yang Y; Duan H
    Int J Mol Sci; 2019 Mar; 20(6):. PubMed ID: 30871211
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.