These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
527 related articles for article (PubMed ID: 2393703)
1. Phase fluctuation in phospholipid membranes revealed by Laurdan fluorescence. Parasassi T; De Stasio G; d'Ubaldo A; Gratton E Biophys J; 1990 Jun; 57(6):1179-86. PubMed ID: 2393703 [TBL] [Abstract][Full Text] [Related]
2. Two photon fluorescence microscopy of coexisting lipid domains in giant unilamellar vesicles of binary phospholipid mixtures. Bagatolli LA; Gratton E Biophys J; 2000 Jan; 78(1):290-305. PubMed ID: 10620293 [TBL] [Abstract][Full Text] [Related]
3. A correlation between lipid domain shape and binary phospholipid mixture composition in free standing bilayers: A two-photon fluorescence microscopy study. Bagatolli LA; Gratton E Biophys J; 2000 Jul; 79(1):434-47. PubMed ID: 10866969 [TBL] [Abstract][Full Text] [Related]
4. Modulation and dynamics of phase properties in phospholipid mixtures detected by Laurdan fluorescence. Parasassi T; Ravagnan G; Rusch RM; Gratton E Photochem Photobiol; 1993 Mar; 57(3):403-10. PubMed ID: 8475171 [TBL] [Abstract][Full Text] [Related]
5. Quantitation of lipid phases in phospholipid vesicles by the generalized polarization of Laurdan fluorescence. Parasassi T; De Stasio G; Ravagnan G; Rusch RM; Gratton E Biophys J; 1991 Jul; 60(1):179-89. PubMed ID: 1883937 [TBL] [Abstract][Full Text] [Related]
6. Origin of laurdan sensitivity to the vesicle-to-micelle transition of phospholipid-octylglucoside system: a time-resolved fluorescence study. Viard M; Gallay J; Vincent M; Paternostre M Biophys J; 2001 Jan; 80(1):347-59. PubMed ID: 11159407 [TBL] [Abstract][Full Text] [Related]
7. Two-photon fluorescence microscopy of laurdan generalized polarization domains in model and natural membranes. Parasassi T; Gratton E; Yu WM; Wilson P; Levi M Biophys J; 1997 Jun; 72(6):2413-29. PubMed ID: 9168019 [TBL] [Abstract][Full Text] [Related]
8. Physical state of bulk and protein-associated lipid in nicotinic acetylcholine receptor-rich membrane studied by laurdan generalized polarization and fluorescence energy transfer. Antollini SS; Soto MA; Bonini de Romanelli I; Gutiérrez-Merino C; Sotomayor P; Barrantes FJ Biophys J; 1996 Mar; 70(3):1275-84. PubMed ID: 8785283 [TBL] [Abstract][Full Text] [Related]
9. A model for the interaction of 6-lauroyl-2-(N,N-dimethylamino)naphthalene with lipid environments: implications for spectral properties. Bagatolli LA; Parasassi T; Fidelio GD; Gratton E Photochem Photobiol; 1999 Oct; 70(4):557-64. PubMed ID: 10546552 [TBL] [Abstract][Full Text] [Related]
10. Laurdan properties in glycosphingolipid-phospholipid mixtures: a comparative fluorescence and calorimetric study. Bagatolli LA; Maggio B; Aguilar F; Sotomayor CP; Fidelio GD Biochim Biophys Acta; 1997 Apr; 1325(1):80-90. PubMed ID: 9106485 [TBL] [Abstract][Full Text] [Related]
11. Influence of cholesterol on phospholipid bilayers phase domains as detected by Laurdan fluorescence. Parasassi T; Di Stefano M; Loiero M; Ravagnan G; Gratton E Biophys J; 1994 Jan; 66(1):120-32. PubMed ID: 8130331 [TBL] [Abstract][Full Text] [Related]
12. Properties of palmitoyl phosphatidylcholine, sphingomyelin, and dihydrosphingomyelin bilayer membranes as reported by different fluorescent reporter molecules. Nyholm T; Nylund M; Söderholm A; Slotte JP Biophys J; 2003 Feb; 84(2 Pt 1):987-97. PubMed ID: 12547780 [TBL] [Abstract][Full Text] [Related]
13. Absence of lipid gel-phase domains in seven mammalian cell lines and in four primary cell types. Parasassi T; Loiero M; Raimondi M; Ravagnan G; Gratton E Biochim Biophys Acta; 1993 Dec; 1153(2):143-54. PubMed ID: 8274484 [TBL] [Abstract][Full Text] [Related]
14. Phase transition affects energy transfer efficiency in phospholipid vesicles. Kozyra KA; Heldt JR; Engelke M; Diehl HA Spectrochim Acta A Mol Biomol Spectrosc; 2005 Apr; 61(6):1153-61. PubMed ID: 15741115 [TBL] [Abstract][Full Text] [Related]
15. Use of laurdan fluorescence intensity and polarization to distinguish between changes in membrane fluidity and phospholipid order. Harris FM; Best KB; Bell JD Biochim Biophys Acta; 2002 Sep; 1565(1):123-8. PubMed ID: 12225860 [TBL] [Abstract][Full Text] [Related]
16. Orientation of Laurdan in Phospholipid Bilayers Influences Its Fluorescence: Quantum Mechanics and Classical Molecular Dynamics Study. Wasif Baig M; Pederzoli M; Jurkiewicz P; Cwiklik L; Pittner J Molecules; 2018 Jul; 23(7):. PubMed ID: 30011800 [TBL] [Abstract][Full Text] [Related]
17. Cholesterol modifies water concentration and dynamics in phospholipid bilayers: a fluorescence study using Laurdan probe. Parasassi T; Di Stefano M; Loiero M; Ravagnan G; Gratton E Biophys J; 1994 Mar; 66(3 Pt 1):763-8. PubMed ID: 8011908 [TBL] [Abstract][Full Text] [Related]
18. Interaction of prenylated chalcones and flavanones from common hop with phosphatidylcholine model membranes. Wesołowska O; Gąsiorowska J; Petrus J; Czarnik-Matusewicz B; Michalak K Biochim Biophys Acta; 2014 Jan; 1838(1 Pt B):173-84. PubMed ID: 24060562 [TBL] [Abstract][Full Text] [Related]
19. Multiphoton excitation fluorescence microscopy in planar membrane systems. Brewer J; Bernardino de la Serna J; Wagner K; Bagatolli LA Biochim Biophys Acta; 2010 Jul; 1798(7):1301-8. PubMed ID: 20226161 [TBL] [Abstract][Full Text] [Related]
20. Lipid phases in renal brush border membranes revealed by Laurdan fluorescence. Levi M; Wilson PV; Cooper OJ; Gratton E Photochem Photobiol; 1993 Mar; 57(3):420-5. PubMed ID: 8475174 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]