These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 23937296)

  • 1. Degradation of organic/organic interfaces in organic light-emitting devices due to polaron-exciton interactions.
    Wang Q; Aziz H
    ACS Appl Mater Interfaces; 2013 Sep; 5(17):8733-9. PubMed ID: 23937296
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simplified organic light-emitting devices utilizing ultrathin electron transport layers and new insights on their roles.
    Zhang Y; Wang Q; Aziz H
    ACS Appl Mater Interfaces; 2014 Feb; 6(3):1697-701. PubMed ID: 24383622
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Degradation Mechanisms in Organic Light-Emitting Diodes with Polyethylenimine as a Solution-Processed Electron Injection Layer.
    Stolz S; Zhang Y; Lemmer U; Hernandez-Sosa G; Aziz H
    ACS Appl Mater Interfaces; 2017 Jan; 9(3):2776-2785. PubMed ID: 28032974
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electroluminescence Stability of Organic Light-Emitting Devices Utilizing a Nondoped Pt-Based Emission Layer.
    Zhang Y; Liao JL; Chi Y; Aziz H
    ACS Omega; 2018 May; 3(5):4760-4765. PubMed ID: 31458695
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elucidating the crucial role of hole injection layer in degradation of organic light-emitting diodes.
    Han TH; Song W; Lee TW
    ACS Appl Mater Interfaces; 2015 Feb; 7(5):3117-25. PubMed ID: 25562405
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Degradation Mechanisms in Blue Phosphorescent Organic Light-Emitting Devices by Exciton-Polaron Interactions: Loss in Quantum Yield versus Loss in Charge Balance.
    Zhang Y; Aziz H
    ACS Appl Mater Interfaces; 2017 Jan; 9(1):636-643. PubMed ID: 27957832
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Origin of Sub-Bandgap Electroluminescence in Organic Light-Emitting Diodes.
    Xiang C; Peng C; Chen Y; So F
    Small; 2015 Oct; 11(40):5439-43. PubMed ID: 26312783
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolating Degradation Mechanisms in Mixed Emissive Layer Organic Light-Emitting Devices.
    Bangsund JS; Hershey KW; Holmes RJ
    ACS Appl Mater Interfaces; 2018 Feb; 10(6):5693-5699. PubMed ID: 29400949
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of the Guest on Aggregation of the Host by Exciton-Polaron Interactions and Its Effects on the Stability of Phosphorescent Organic Light-Emitting Devices.
    Zhang Y; Aziz H
    ACS Appl Mater Interfaces; 2016 Jun; 8(22):14088-95. PubMed ID: 27188520
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of excitons within the hole transporting layer in quantum dot light emitting device degradation.
    Davidson-Hall T; Aziz H
    Nanoscale; 2019 Apr; 11(17):8310-8318. PubMed ID: 30982837
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Root Causes of the Limited Electroluminescence Stability of Organic Light-Emitting Devices Made by Solution-Coating.
    Cho YJ; Aziz H
    ACS Appl Mater Interfaces; 2018 May; 10(21):18113-18122. PubMed ID: 29733188
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Excitons and Polarons in Organic Materials.
    Ghosh R; Spano FC
    Acc Chem Res; 2020 Oct; 53(10):2201-2211. PubMed ID: 33035054
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Charge-transfer excitons at organic semiconductor surfaces and interfaces.
    Zhu XY; Yang Q; Muntwiler M
    Acc Chem Res; 2009 Nov; 42(11):1779-87. PubMed ID: 19378979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recombination of polaron and exciton in conjugated polymers.
    Meng Y; Liu XJ; Di B; An Z
    J Chem Phys; 2009 Dec; 131(24):244502. PubMed ID: 20059074
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extrafluorescent electroluminescence in organic light-emitting devices.
    Segal M; Singh M; Rivoire K; Difley S; Van Voorhis T; Baldo MA
    Nat Mater; 2007 May; 6(5):374-8. PubMed ID: 17417644
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Directing energy transport in organic photovoltaic cells using interfacial exciton gates.
    Menke SM; Mullenbach TK; Holmes RJ
    ACS Nano; 2015 Apr; 9(4):4543-52. PubMed ID: 25798712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling Electron-Transfer Degradation of Organic Light-Emitting Devices.
    Moon YK; Jang HJ; Hwang S; Kang S; Kim S; Oh J; Lee S; Kim D; Lee JY; You Y
    Adv Mater; 2021 Mar; 33(12):e2003832. PubMed ID: 33586272
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Degradation Analysis of Organic Light-Emitting Diodes through Dispersive Magneto-Electroluminescence Response.
    Mondal AK; Pan X; Kwon O; Vardeny ZV
    ACS Appl Mater Interfaces; 2023 Feb; ():. PubMed ID: 36749918
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spin-dependent polaron recombination in conjugated polymers.
    Sun Z; Stafström S
    J Chem Phys; 2012 Jun; 136(24):244901. PubMed ID: 22755597
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carrier-collision-induced formation of charged excitons and ultrafast dynamics fluorescence spectra.
    Chen RA; Wang C; Li S; George TF
    J Phys Chem A; 2012 Dec; 116(49):12089-95. PubMed ID: 23186537
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.