These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

378 related articles for article (PubMed ID: 23937426)

  • 21. Activity of dietary fatty acids on FFA1 and FFA4 and characterisation of pinolenic acid as a dual FFA1/FFA4 agonist with potential effect against metabolic diseases.
    Christiansen E; Watterson KR; Stocker CJ; Sokol E; Jenkins L; Simon K; Grundmann M; Petersen RK; Wargent ET; Hudson BD; Kostenis E; Ejsing CS; Cawthorne MA; Milligan G; Ulven T
    Br J Nutr; 2015 Jun; 113(11):1677-88. PubMed ID: 25916176
    [TBL] [Abstract][Full Text] [Related]  

  • 22. FFA1-selective agonistic activity based on docking simulation using FFA1 and GPR120 homology models.
    Takeuchi M; Hirasawa A; Hara T; Kimura I; Hirano T; Suzuki T; Miyata N; Awaji T; Ishiguro M; Tsujimoto G
    Br J Pharmacol; 2013 Apr; 168(7):1570-83. PubMed ID: 22639973
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Free Fatty Acid Receptor Family: A New Therapeutic Target for Metabolic Diseases].
    Hirasawa A
    Yakugaku Zasshi; 2015; 135(6):769-77. PubMed ID: 26028412
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pharmacology of Free Fatty Acid Receptors and Their Allosteric Modulators.
    Grundmann M; Bender E; Schamberger J; Eitner F
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33578942
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Drug discovery opportunities and challenges at g protein coupled receptors for long chain free Fatty acids.
    Holliday ND; Watson SJ; Brown AJ
    Front Endocrinol (Lausanne); 2011; 2():112. PubMed ID: 22649399
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Free fatty acid receptors act as nutrient sensors to regulate energy homeostasis.
    Ichimura A; Hirasawa A; Hara T; Tsujimoto G
    Prostaglandins Other Lipid Mediat; 2009 Sep; 89(3-4):82-8. PubMed ID: 19460454
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The dual role of free fatty acid signaling in inflammation and therapeutics.
    Volpe CM; Nogueira-Machado JA
    Recent Pat Endocr Metab Immune Drug Discov; 2013 Sep; 7(3):189-97. PubMed ID: 23909843
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Oncogenic signaling of the free-fatty acid receptors FFA1 and FFA4 in human breast carcinoma cells.
    Karmokar PF; Moniri NH
    Biochem Pharmacol; 2022 Dec; 206():115328. PubMed ID: 36309079
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Free fatty acid receptors FFAR1 and GPR120 as novel therapeutic targets for metabolic disorders.
    Hara T; Hirasawa A; Ichimura A; Kimura I; Tsujimoto G
    J Pharm Sci; 2011 Sep; 100(9):3594-601. PubMed ID: 21618241
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Physiology and therapeutics of the free fatty acid receptor GPR40.
    Huang H; Dai MH; Tao YX
    Prog Mol Biol Transl Sci; 2014; 121():67-94. PubMed ID: 24373235
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The role of G-protein-coupled receptors in mediating the effect of fatty acids on inflammation and insulin sensitivity.
    Oh DY; Lagakos WS
    Curr Opin Clin Nutr Metab Care; 2011 Jul; 14(4):322-7. PubMed ID: 21587066
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Application of GPCR Structures for Modelling of Free Fatty Acid Receptors.
    Tikhonova IG
    Handb Exp Pharmacol; 2017; 236():57-77. PubMed ID: 27757764
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Free fatty acids inhibit serum deprivation-induced apoptosis through GPR120 in a murine enteroendocrine cell line STC-1.
    Katsuma S; Hatae N; Yano T; Ruike Y; Kimura M; Hirasawa A; Tsujimoto G
    J Biol Chem; 2005 May; 280(20):19507-15. PubMed ID: 15774482
    [TBL] [Abstract][Full Text] [Related]  

  • 34. New frontiers in gut nutrient sensor research: free fatty acid sensing in the gastrointestinal tract.
    Miyauchi S; Hirasawa A; Ichimura A; Hara T; Tsujimoto G
    J Pharmacol Sci; 2010; 112(1):19-24. PubMed ID: 20093784
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Physiologic and pathologic effects of dietary free fatty acids on cells of the joint.
    Harasymowicz NS; Dicks A; Wu CL; Guilak F
    Ann N Y Acad Sci; 2019 Mar; 1440(1):36-53. PubMed ID: 30648276
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural basis for the ligand recognition and signaling of free fatty acid receptors.
    Zhang X; Guseinov AA; Jenkins L; Li K; Tikhonova IG; Milligan G; Zhang C
    Sci Adv; 2024 Jan; 10(2):eadj2384. PubMed ID: 38198545
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Free fatty acid receptors and their physiological role in metabolic regulation].
    Hirasawa A; Hara T; Ichimura A; Tsujimoto G
    Yakugaku Zasshi; 2011; 131(12):1683-9. PubMed ID: 22129861
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A novel antidiabetic therapy: free fatty acid receptors as potential drug target.
    Sekiguchi H; Kasubuchi M; Hasegawa S; Pelisch N; Kimura I; Ichimura A
    Curr Diabetes Rev; 2015; 11(2):107-15. PubMed ID: 25732031
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Experimental challenges to targeting poorly characterized GPCRs: uncovering the therapeutic potential for free fatty acid receptors.
    Hudson BD; Smith NJ; Milligan G
    Adv Pharmacol; 2011; 62():175-218. PubMed ID: 21907910
    [TBL] [Abstract][Full Text] [Related]  

  • 40. HWL-088, a new and highly effective FFA1/PPARĪ“ dual agonist, attenuates nonalcoholic steatohepatitis by regulating lipid metabolism, inflammation and fibrosis.
    Hu L; Zhou Z; Deng L; Ren Q; Cai Z; Wang B; Li Z; Wang G
    J Pharm Pharmacol; 2020 Nov; 72(11):1564-1573. PubMed ID: 32734608
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.