BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 23937515)

  • 1. Photochemical and optical properties of water-soluble xanthophyll antioxidants: aggregation vs complexation.
    Polyakov NE; Magyar A; Kispert LD
    J Phys Chem B; 2013 Sep; 117(35):10173-82. PubMed ID: 23937515
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solubilization and stabilization of macular carotenoids by water soluble oligosaccharides and polysaccharides.
    Apanasenko IE; Selyutina OY; Polyakov NE; Suntsova LP; Meteleva ES; Dushkin AV; Vachali P; Bernstein PS
    Arch Biochem Biophys; 2015 Apr; 572():58-65. PubMed ID: 25527162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Water soluble biocompatible vesicles based on polysaccharides and oligosaccharides inclusion complexes for carotenoid delivery.
    Polyakov NE; Kispert LD
    Carbohydr Polym; 2015 Sep; 128():207-19. PubMed ID: 26005157
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Degradation of non-esterified and esterified xanthophylls by free radicals.
    Pérez-Gálvez A; Mínguez-Mosquera MI
    Biochim Biophys Acta; 2002 Jan; 1569(1-3):31-4. PubMed ID: 11853954
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antioxidant and redox properties of supramolecular complexes of carotenoids with beta-glycyrrhizic acid.
    Polyakov NE; Leshina TV; Salakhutdinov NF; Konovalova TA; Kispert LD
    Free Radic Biol Med; 2006 May; 40(10):1804-9. PubMed ID: 16678018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Host-guest complexes of carotenoids with beta-glycyrrhizic acid.
    Polyakov NE; Leshina TV; Salakhutdinov NF; Kispert LD
    J Phys Chem B; 2006 Apr; 110(13):6991-8. PubMed ID: 16571013
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accumulation of macular xanthophylls in unsaturated membrane domains.
    Wisniewska A; Subczynski WK
    Free Radic Biol Med; 2006 May; 40(10):1820-6. PubMed ID: 16678020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photophysical properties of xanthophylls in carotenoproteins from human retinas.
    Billsten HH; Bhosale P; Yemelyanov A; Bernstein PS; Polívka T
    Photochem Photobiol; 2003 Aug; 78(2):138-45. PubMed ID: 12945581
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrophilic carotenoids: surface properties and aggregation of an astaxanthin-lysine conjugate, a rigid, long-chain, highly unsaturated and highly water-soluble tetracationic bolaamphiphile.
    Naess SN; Sliwka HR; Partali V; Melø TB; Razi Naqvi K; Jackson HL; Lockwood SF
    Chem Phys Lipids; 2007 Aug; 148(2):63-9. PubMed ID: 17531964
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Water soluble complexes of carotenoids with arabinogalactan.
    Polyakov NE; Leshina TV; Meteleva ES; Dushkin AV; Konovalova TA; Kispert LD
    J Phys Chem B; 2009 Jan; 113(1):275-82. PubMed ID: 19061372
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Balance of xanthophylls molecular and protonated molecular ions in electrospray ionization.
    Guaratini T; Vessecchi R; Pinto E; Colepicolo P; Lopes NP
    J Mass Spectrom; 2005 Jul; 40(7):963-8. PubMed ID: 15934042
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Xanthophyll: Health benefits and therapeutic insights.
    Aziz E; Batool R; Akhtar W; Rehman S; Shahzad T; Malik A; Shariati MA; Laishevtcev A; Plygun S; Heydari M; Rauf A; Ahmed Arif S
    Life Sci; 2020 Jan; 240():117104. PubMed ID: 31783054
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The retinal carotenoids zeaxanthin and lutein scavenge superoxide and hydroxyl radicals: a chemiluminescence and ESR study.
    Trevithick-Sutton CC; Foote CS; Collins M; Trevithick JR
    Mol Vis; 2006 Sep; 12():1127-35. PubMed ID: 17093397
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A mathematical model describing kinetics of conversion of violaxanthin to zeaxanthin via intermediate antheraxanthin by the xanthophyll cycle enzyme violaxanthin de-epoxidase.
    Latowski D; Burda K; Strzałka K
    J Theor Biol; 2000 Oct; 206(4):507-14. PubMed ID: 11013111
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Xanthophyll synthesis in diatoms: quantification of putative intermediates and comparison of pigment conversion kinetics with rate constants derived from a model.
    Lohr M; Wilhelm C
    Planta; 2001 Feb; 212(3):382-91. PubMed ID: 11289603
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Macular zeaxanthins and lutein -- a review of dietary sources and bioavailability and some relationships with macular pigment optical density and age-related macular disease.
    Thurnham DI
    Nutr Res Rev; 2007 Dec; 20(2):163-79. PubMed ID: 19079868
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Seasonal changes of violaxanthin cycle pigment de-epoxidation in wintergreen and evergreen plants.
    Dymova O; Golovko T
    Acta Biochim Pol; 2012; 59(1):143-4. PubMed ID: 22428127
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Occurrence of neoxanthin and lutein epoxide cycle in parasitic Cuscuta species.
    Kruk J; Szymańska R
    Acta Biochim Pol; 2008; 55(1):183-90. PubMed ID: 18217105
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carotenoids exclusively synthesized in red pepper (capsanthin and capsorubin) protect human dermal fibroblasts against UVB induced DNA damage.
    Fernández-García E; Carvajal-Lérida I; Pérez-Gálvez A
    Photochem Photobiol Sci; 2016 Aug; 15(9):1204-1211. PubMed ID: 27537377
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carotenoid-membrane interactions in liposomes: effect of dipolar, monopolar, and nonpolar carotenoids.
    Wisniewska A; Widomska J; Subczynski WK
    Acta Biochim Pol; 2006; 53(3):475-84. PubMed ID: 16964324
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.