These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

461 related articles for article (PubMed ID: 23937539)

  • 1. Small-interfering RNAs (siRNAs) as a promising tool for ocular therapy.
    Guzman-Aranguez A; Loma P; Pintor J
    Br J Pharmacol; 2013 Oct; 170(4):730-47. PubMed ID: 23937539
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of small interfering RNA (siRNA) in targeting ocular neovascularization: A review.
    Supe S; Upadhya A; Singh K
    Exp Eye Res; 2021 Jan; 202():108329. PubMed ID: 33198953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potential applications for RNAi to probe pathogenesis and develop new treatments for ocular disorders.
    Campochiaro PA
    Gene Ther; 2006 Mar; 13(6):559-62. PubMed ID: 16195702
    [TBL] [Abstract][Full Text] [Related]  

  • 4. siRNA Therapeutics in Ocular Diseases.
    Moreno-Montañés J; Bleau AM; Martínez T; Vargas B; González MV; Jiménez AI
    Methods Mol Biol; 2021; 2282():417-442. PubMed ID: 33928588
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RNA therapeutics in ophthalmology - translation to clinical trials.
    Gupta A; Kafetzis KN; Tagalakis AD; Yu-Wai-Man C
    Exp Eye Res; 2021 Apr; 205():108482. PubMed ID: 33548256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Small interfering RNAs (siRNAs) based gene silencing strategies for the treatment of glaucoma: Recent advancements and future perspectives.
    Naik S; Shreya AB; Raychaudhuri R; Pandey A; Lewis SA; Hazarika M; Bhandary SV; Rao BSS; Mutalik S
    Life Sci; 2021 Jan; 264():118712. PubMed ID: 33159955
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interfering with disease: opportunities and roadblocks to harnessing RNA interference.
    Lieberman J; Song E; Lee SK; Shankar P
    Trends Mol Med; 2003 Sep; 9(9):397-403. PubMed ID: 13129706
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of delivery agents used for introduction of small interfering RNAs into feline corneal cells.
    Wilkes RP; Ward DA; Newkirk KM; Adams JK; Kania SA
    Am J Vet Res; 2013 Feb; 74(2):243-7. PubMed ID: 23363349
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RNA-interference-based gene therapy approaches to HIV type-1 treatment: tackling the hurdles from bench to bedside.
    von Eije KJ; Berkhout B
    Antivir Chem Chemother; 2009; 19(6):221-33. PubMed ID: 19641231
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prospects for the potential of RNA interference in the treatment of autoimmune diseases: Small interfering RNAs in the spotlight.
    Gorabi AM; Kiaie N; Aslani S; Jamialahmadi T; Johnston TP; Sahebkar A
    J Autoimmun; 2020 Nov; 114():102529. PubMed ID: 32782117
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RNA interference-mediated gene silencing of pleiotrophin through polyethylenimine-complexed small interfering RNAs in vivo exerts antitumoral effects in glioblastoma xenografts.
    Grzelinski M; Urban-Klein B; Martens T; Lamszus K; Bakowsky U; Höbel S; Czubayko F; Aigner A
    Hum Gene Ther; 2006 Jul; 17(7):751-66. PubMed ID: 16839274
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Harnessing RNA interference to develop neonatal therapies: from Nobel Prize winning discovery to proof of concept clinical trials.
    DeVincenzo JP
    Early Hum Dev; 2009 Oct; 85(10 Suppl):S31-5. PubMed ID: 19833462
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strategies for silencing human disease using RNA interference.
    Kim DH; Rossi JJ
    Nat Rev Genet; 2007 Mar; 8(3):173-84. PubMed ID: 17304245
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Treatment of ocular disorders by gene therapy.
    Solinís MÁ; del Pozo-Rodríguez A; Apaolaza PS; Rodríguez-Gascón A
    Eur J Pharm Biopharm; 2015 Sep; 95(Pt B):331-42. PubMed ID: 25536112
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of gene therapy for treatment of age-related macular degeneration.
    Askou AL
    Acta Ophthalmol; 2014 Jul; 92 Thesis3():1-38. PubMed ID: 24953666
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of RNA interference-based therapeutics and application of multi-target small interfering RNAs.
    Li T; Wu M; Zhu YY; Chen J; Chen L
    Nucleic Acid Ther; 2014 Aug; 24(4):302-12. PubMed ID: 24796432
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RNAi therapeutics: an update on delivery.
    Nguyen T; Menocal EM; Harborth J; Fruehauf JH
    Curr Opin Mol Ther; 2008 Apr; 10(2):158-67. PubMed ID: 18386228
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo gene silencing following non-invasive siRNA delivery into the skin using a novel topical formulation.
    Hegde V; Hickerson RP; Nainamalai S; Campbell PA; Smith FJ; McLean WH; Pedrioli DM
    J Control Release; 2014 Dec; 196():355-62. PubMed ID: 25449884
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RNA interference trigger variants: getting the most out of RNA for RNA interference-based therapeutics.
    Snead NM; Rossi JJ
    Nucleic Acid Ther; 2012 Jun; 22(3):139-46. PubMed ID: 22703279
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RNAi therapeutics: SNALPing siRNAs in vivo.
    Rossi JJ
    Gene Ther; 2006 Apr; 13(7):583-4. PubMed ID: 17526070
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 24.