These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
461 related articles for article (PubMed ID: 23937539)
21. Therapeutic face of RNAi: in vivo challenges. Borna H; Imani S; Iman M; Azimzadeh Jamalkandi S Expert Opin Biol Ther; 2015 Feb; 15(2):269-85. PubMed ID: 25399911 [TBL] [Abstract][Full Text] [Related]
22. RNAi-based drug discovery and its application to therapeutics. Hokaiwado N; Takeshita F; Banas A; Ochiya T IDrugs; 2008 Apr; 11(4):274-8. PubMed ID: 18379962 [TBL] [Abstract][Full Text] [Related]
23. Gene silencing through RNA interference (RNAi) in vivo: strategies based on the direct application of siRNAs. Aigner A J Biotechnol; 2006 Jun; 124(1):12-25. PubMed ID: 16413079 [TBL] [Abstract][Full Text] [Related]
24. Delivery of siRNA to the Eye: Protocol for a Feasibility Study to Assess Novel Delivery System for Topical Delivery of siRNA Therapeutics to the Ocular Surface. Baran-Rachwalska P; Saffie-Siebert S; Moore CBT Methods Mol Biol; 2021; 2282():443-453. PubMed ID: 33928589 [TBL] [Abstract][Full Text] [Related]
25. Gene therapy for ocular diseases. Liu MM; Tuo J; Chan CC Br J Ophthalmol; 2011 May; 95(5):604-12. PubMed ID: 20733027 [TBL] [Abstract][Full Text] [Related]
26. Nonviral in vivo delivery of therapeutic small interfering RNAs. Aigner A Curr Opin Mol Ther; 2007 Aug; 9(4):345-52. PubMed ID: 17694447 [TBL] [Abstract][Full Text] [Related]
27. Gene silencing mediated by small interfering RNAs in mammalian cells. Scherr M; Morgan MA; Eder M Curr Med Chem; 2003 Feb; 10(3):245-56. PubMed ID: 12570711 [TBL] [Abstract][Full Text] [Related]
28. Polyethylenimines for RNAi-mediated gene targeting in vivo and siRNA delivery to the lung. Günther M; Lipka J; Malek A; Gutsch D; Kreyling W; Aigner A Eur J Pharm Biopharm; 2011 Apr; 77(3):438-49. PubMed ID: 21093588 [TBL] [Abstract][Full Text] [Related]
29. Advances in cell-type specific delivery of RNAi-based therapeutics. Dykxhoorn DM IDrugs; 2010 May; 13(5):325-31. PubMed ID: 20432190 [TBL] [Abstract][Full Text] [Related]
30. RNA interference as a gene-specific approach for molecular medicine. Grünweller A; Hartmann RK Curr Med Chem; 2005; 12(26):3143-61. PubMed ID: 16375707 [TBL] [Abstract][Full Text] [Related]
31. Therapeutic potentials of gene silencing by RNA interference: principles, challenges, and new strategies. Deng Y; Wang CC; Choy KW; Du Q; Chen J; Wang Q; Li L; Chung TK; Tang T Gene; 2014 Apr; 538(2):217-27. PubMed ID: 24406620 [TBL] [Abstract][Full Text] [Related]
32. Vector-based delivery of siRNAs: in vitro and in vivo challenges. Walchli S; Sioud M Front Biosci; 2008 May; 13():3488-93. PubMed ID: 18508450 [TBL] [Abstract][Full Text] [Related]
34. RNA interference--a silent but an efficient therapeutic tool. Ramachandran PV; Ignacimuthu S Appl Biochem Biotechnol; 2013 Mar; 169(6):1774-89. PubMed ID: 23340870 [TBL] [Abstract][Full Text] [Related]
35. Circular and long non-coding RNAs and their role in ophthalmologic diseases. Wawrzyniak O; Zarębska Ż; Rolle K; Gotz-Więckowska A Acta Biochim Pol; 2018 Nov; 65(4):497-508. PubMed ID: 30428483 [TBL] [Abstract][Full Text] [Related]
36. RNA interference: from gene silencing to gene-specific therapeutics. Leung RK; Whittaker PA Pharmacol Ther; 2005 Aug; 107(2):222-39. PubMed ID: 15908010 [TBL] [Abstract][Full Text] [Related]
37. Small interfering RNAs (siRNAs) in cancer therapy: a nano-based approach. Mahmoodi Chalbatani G; Dana H; Gharagouzloo E; Grijalvo S; Eritja R; Logsdon CD; Memari F; Miri SR; Rad MR; Marmari V Int J Nanomedicine; 2019; 14():3111-3128. PubMed ID: 31118626 [TBL] [Abstract][Full Text] [Related]
38. Retina expression and cross-species validation of gene silencing by PF-655, a small interfering RNA against RTP801 for the treatment of ocular disease. Lee DU; Huang W; Rittenhouse KD; Jessen B J Ocul Pharmacol Ther; 2012 Jun; 28(3):222-30. PubMed ID: 22304497 [TBL] [Abstract][Full Text] [Related]