These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
369 related articles for article (PubMed ID: 23937586)
1. Implications of enzyme deficiencies on mitochondrial energy metabolism and reactive oxygen species formation of neurons involved in rotenone-induced Parkinson's disease: a model-based analysis. Berndt N; Holzhütter HG; Bulik S FEBS J; 2013 Oct; 280(20):5080-93. PubMed ID: 23937586 [TBL] [Abstract][Full Text] [Related]
2. alpha-Ketoglutarate dehydrogenase contributes to production of reactive oxygen species in glutamate-stimulated hippocampal neurons in situ. Zündorf G; Kahlert S; Bunik VI; Reiser G Neuroscience; 2009 Jan; 158(2):610-6. PubMed ID: 18996448 [TBL] [Abstract][Full Text] [Related]
4. Inhibition of alpha-ketoglutarate dehydrogenase complex promotes cytochrome c release from mitochondria, caspase-3 activation, and necrotic cell death. Huang HM; Ou HC; Xu H; Chen HL; Fowler C; Gibson GE J Neurosci Res; 2003 Oct; 74(2):309-17. PubMed ID: 14515360 [TBL] [Abstract][Full Text] [Related]
5. Integrating glutathione metabolism and mitochondrial dysfunction with implications for Parkinson's disease: a dynamic model. Vali S; Mythri RB; Jagatha B; Padiadpu J; Ramanujan KS; Andersen JK; Gorin F; Bharath MM Neuroscience; 2007 Nov; 149(4):917-30. PubMed ID: 17936517 [TBL] [Abstract][Full Text] [Related]
6. Activation of adenosine triphosphate-sensitive potassium channels confers protection against rotenone-induced cell death: therapeutic implications for Parkinson's disease. Tai KK; Truong DD J Neurosci Res; 2002 Aug; 69(4):559-66. PubMed ID: 12210849 [TBL] [Abstract][Full Text] [Related]
7. The Effect of Neuronal CoQ Millichap L; Turton N; Damiani E; Marcheggiani F; Orlando P; Silvestri S; Tiano L; Hargreaves IP Int J Mol Sci; 2024 Jun; 25(12):. PubMed ID: 38928331 [TBL] [Abstract][Full Text] [Related]
8. Bioenergetics and the formation of mitochondrial reactive oxygen species. Adam-Vizi V; Chinopoulos C Trends Pharmacol Sci; 2006 Dec; 27(12):639-45. PubMed ID: 17056127 [TBL] [Abstract][Full Text] [Related]
9. Gene therapy of yeast NDI1 on mitochondrial complex I dysfunction in rotenone-induced Parkinson's disease models in vitro and vivo. Li H; Sun B; Huang Y; Zhang J; Xu X; Shen Y; Chen Z; Yang J; Shen L; Hu Y; Gu H Mol Med; 2022 Mar; 28(1):29. PubMed ID: 35255803 [TBL] [Abstract][Full Text] [Related]
10. Acute action of rotenone on nigral dopaminergic neurons--involvement of reactive oxygen species and disruption of Ca2+ homeostasis. Freestone PS; Chung KK; Guatteo E; Mercuri NB; Nicholson LF; Lipski J Eur J Neurosci; 2009 Nov; 30(10):1849-59. PubMed ID: 19912331 [TBL] [Abstract][Full Text] [Related]
11. Cisplatin-induced nephrotoxicity in porcine proximal tubular cells: mitochondrial dysfunction by inhibition of complexes I to IV of the respiratory chain. Kruidering M; Van de Water B; de Heer E; Mulder GJ; Nagelkerke JF J Pharmacol Exp Ther; 1997 Feb; 280(2):638-49. PubMed ID: 9023274 [TBL] [Abstract][Full Text] [Related]
12. Nitrosylation and nitration of mitochondrial complex I in Parkinson's disease. Chinta SJ; Andersen JK Free Radic Res; 2011 Jan; 45(1):53-8. PubMed ID: 20815786 [TBL] [Abstract][Full Text] [Related]
13. Depletion of PINK1 affects mitochondrial metabolism, calcium homeostasis and energy maintenance. Heeman B; Van den Haute C; Aelvoet SA; Valsecchi F; Rodenburg RJ; Reumers V; Debyser Z; Callewaert G; Koopman WJ; Willems PH; Baekelandt V J Cell Sci; 2011 Apr; 124(Pt 7):1115-25. PubMed ID: 21385841 [TBL] [Abstract][Full Text] [Related]
14. Initiation of neuronal damage by complex I deficiency and oxidative stress in Parkinson's disease. Tretter L; Sipos I; Adam-Vizi V Neurochem Res; 2004 Mar; 29(3):569-77. PubMed ID: 15038604 [TBL] [Abstract][Full Text] [Related]
15. An immunohistochemical study on alpha-ketoglutarate dehydrogenase complex in Parkinson's disease. Mizuno Y; Matuda S; Yoshino H; Mori H; Hattori N; Ikebe S Ann Neurol; 1994 Feb; 35(2):204-10. PubMed ID: 8109900 [TBL] [Abstract][Full Text] [Related]
16. Reversible inhibition of mitochondrial complex I activity following chronic dopaminergic glutathione depletion in vitro: implications for Parkinson's disease. Chinta SJ; Andersen JK Free Radic Biol Med; 2006 Nov; 41(9):1442-8. PubMed ID: 17023271 [TBL] [Abstract][Full Text] [Related]
17. Consequences of the α-ketoglutarate dehydrogenase inhibition for neuronal metabolism and survival: implications for neurodegenerative diseases. Trofimova LK; Araújo WL; Strokina AA; Fernie AR; Bettendorff L; Bunik VI Curr Med Chem; 2012; 19(34):5895-906. PubMed ID: 23061627 [TBL] [Abstract][Full Text] [Related]
18. Inhibition of the alpha-ketoglutarate dehydrogenase-mediated reactive oxygen species generation by lipoic acid. Ambrus A; Tretter L; Adam-Vizi V J Neurochem; 2009 May; 109 Suppl 1():222-9. PubMed ID: 19393031 [TBL] [Abstract][Full Text] [Related]
19. Lamotrigine inhibition of rotenone- or 1-methyl-4-phenylpyridinium-induced mitochondrial damage and cell death. Kim YJ; Ko HH; Han ES; Lee CS Brain Res Bull; 2007 Mar; 71(6):633-40. PubMed ID: 17292807 [TBL] [Abstract][Full Text] [Related]
20. Kinetic Modeling of the Mitochondrial Energy Metabolism of Neuronal Cells: The Impact of Reduced α-Ketoglutarate Dehydrogenase Activities on ATP Production and Generation of Reactive Oxygen Species. Berndt N; Bulik S; Holzhütter HG Int J Cell Biol; 2012; 2012():757594. PubMed ID: 22719765 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]