BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 23937911)

  • 1. High-throughput generation of spheroids using magnetic nanoparticles for three-dimensional cell culture.
    Kim JA; Choi JH; Kim M; Rhee WJ; Son B; Jung HK; Park TH
    Biomaterials; 2013 Nov; 34(34):8555-63. PubMed ID: 23937911
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generation and manipulation of magnetic multicellular spheroids.
    Ho VH; Müller KH; Barcza A; Chen R; Slater NK
    Biomaterials; 2010 Apr; 31(11):3095-102. PubMed ID: 20045553
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnetic-directed patterning of cell spheroids.
    Whatley BR; Li X; Zhang N; Wen X
    J Biomed Mater Res A; 2014 May; 102(5):1537-47. PubMed ID: 23666910
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three dimensional spheroid cell culture for nanoparticle safety testing.
    Sambale F; Lavrentieva A; Stahl F; Blume C; Stiesch M; Kasper C; Bahnemann D; Scheper T
    J Biotechnol; 2015 Jul; 205():120-9. PubMed ID: 25595712
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Droplet-based microfluidic system to form and separate multicellular spheroids using magnetic nanoparticles.
    Yoon S; Kim JA; Lee SH; Kim M; Park TH
    Lab Chip; 2013 Apr; 13(8):1522-8. PubMed ID: 23426090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Magnetic levitating polymeric nano/microparticular substrates for three-dimensional tumor cell culture.
    Lee WR; Oh KT; Park SY; Yoo NY; Ahn YS; Lee DH; Youn YS; Lee DK; Cha KH; Lee ES
    Colloids Surf B Biointerfaces; 2011 Jul; 85(2):379-84. PubMed ID: 21420837
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An oxygen-permeable spheroid culture system for the prevention of central hypoxia and necrosis of spheroids.
    Anada T; Fukuda J; Sai Y; Suzuki O
    Biomaterials; 2012 Nov; 33(33):8430-41. PubMed ID: 22940219
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of dimensionality on growth and differentiation of neural progenitors from different regions of fetal rat brain in vitro: 3-dimensional spheroid versus 2-dimensional monolayer culture.
    Lu H; Searle K; Liu Y; Parker T
    Cells Tissues Organs; 2012; 196(1):48-55. PubMed ID: 22301365
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Suspension culture of hepatocyte-derived reporter cells in presence of albumin to form stable three-dimensional spheroids.
    Weeks CA; Newman K; Turner PA; Rodysill B; Hickey RD; Nyberg SL; Janorkar AV
    Biotechnol Bioeng; 2013 Sep; 110(9):2548-55. PubMed ID: 23483526
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetic reconstruction of three-dimensional tissues from multicellular spheroids.
    Lin RZ; Chu WC; Chiang CC; Lai CH; Chang HY
    Tissue Eng Part C Methods; 2008 Sep; 14(3):197-205. PubMed ID: 18781835
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of a three-dimensional multicellular assembly using magnetic patterning.
    Frasca G; Gazeau F; Wilhelm C
    Langmuir; 2009 Feb; 25(4):2348-54. PubMed ID: 19166275
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scaffold-free formation of a millimeter-scale multicellular spheroid with an internal cavity from magnetically levitated 3T3 cells that ingested iron oxide-containing microspheres.
    Lee JH; Hur W
    Biotechnol Bioeng; 2014 May; 111(5):1038-47. PubMed ID: 24254251
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a magnetic 3D spheroid platform with potential application for high-throughput drug screening.
    Guo WM; Loh XJ; Tan EY; Loo JS; Ho VH
    Mol Pharm; 2014 Jul; 11(7):2182-9. PubMed ID: 24842574
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A polymer microstructure array for the formation, culturing, and high throughput drug screening of breast cancer spheroids.
    Markovitz-Bishitz Y; Tauber Y; Afrimzon E; Zurgil N; Sobolev M; Shafran Y; Deutsch A; Howitz S; Deutsch M
    Biomaterials; 2010 Nov; 31(32):8436-44. PubMed ID: 20692698
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent advances in three-dimensional multicellular spheroid culture for biomedical research.
    Lin RZ; Chang HY
    Biotechnol J; 2008 Oct; 3(9-10):1172-84. PubMed ID: 18566957
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Manipulating magnetic 3D spheroids in hanging drops for applications in tissue engineering and drug screening.
    Ho VH; Guo WM; Huang CL; Ho SF; Chaw SY; Tan EY; Ng KW; Loo JS
    Adv Healthc Mater; 2013 Nov; 2(11):1430-4. PubMed ID: 23606526
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetic flattening of stem-cell spheroids indicates a size-dependent elastocapillary transition.
    Mazuel F; Reffay M; Du V; Bacri JC; Rieu JP; Wilhelm C
    Phys Rev Lett; 2015 Mar; 114(9):098105. PubMed ID: 25793856
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamics of spheroid self-assembly in liquid-overlay culture of DU 145 human prostate cancer cells.
    Enmon RM; O'Connor KC; Lacks DJ; Schwartz DK; Dotson RS
    Biotechnol Bioeng; 2001 Mar; 72(6):579-91. PubMed ID: 11460249
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generation of multicellular tumor spheroids of breast cancer cells: how to go three-dimensional.
    Nagelkerke A; Bussink J; Sweep FC; Span PN
    Anal Biochem; 2013 Jun; 437(1):17-9. PubMed ID: 23435308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An injectable spheroid system with genetic modification for cell transplantation therapy.
    Uchida S; Itaka K; Nomoto T; Endo T; Matsumoto Y; Ishii T; Kataoka K
    Biomaterials; 2014 Mar; 35(8):2499-506. PubMed ID: 24388386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.