These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 23938085)

  • 1. Automated detection of gait initiation and termination using wearable sensors.
    Novak D; Reberšek P; De Rossi SM; Donati M; Podobnik J; Beravs T; Lenzi T; Vitiello N; Carrozza MC; Munih M
    Med Eng Phys; 2013 Dec; 35(12):1713-20. PubMed ID: 23938085
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement of multi-segment foot joint angles during gait using a wearable system.
    Rouhani H; Favre J; Crevoisier X; Aminian K
    J Biomech Eng; 2012 Jun; 134(6):061006. PubMed ID: 22757503
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimation of ground reaction forces and joint moments on the basis on plantar pressure insoles and wearable sensors for joint angle measurement.
    Ostaszewski M; Pauk J
    Technol Health Care; 2018; 26(S2):605-612. PubMed ID: 29843283
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inertial sensing algorithms for long-term foot angle monitoring for assessment of idiopathic toe-walking.
    Chalmers E; Le J; Sukhdeep D; Watt J; Andersen J; Lou E
    Gait Posture; 2014; 39(1):485-9. PubMed ID: 24050952
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Online decoding of hidden Markov models for gait event detection using foot-mounted gyroscopes.
    Mannini A; Genovese V; Maria Sabatini A
    IEEE J Biomed Health Inform; 2014 Jul; 18(4):1122-30. PubMed ID: 25014927
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of gait segmentation methods for wearable foot pressure sensors.
    Crea S; De Rossi SM; Donati M; Reberšek P; Novak D; Vitiello N; Lenzi T; Podobnik J; Munih M; Carrozza MC
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():5018-21. PubMed ID: 23367055
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pedestrian Navigation Method Based on Machine Learning and Gait Feature Assistance.
    Zhou Z; Yang S; Ni Z; Qian W; Gu C; Cao Z
    Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32164287
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of the performance of 17 algorithms from a systematic review: Influence of sensor position, analysed variable and computational approach in gait timing estimation from IMU measurements.
    Pacini Panebianco G; Bisi MC; Stagni R; Fantozzi S
    Gait Posture; 2018 Oct; 66():76-82. PubMed ID: 30170137
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of a mixed approach combining stationary and wearable systems to monitor gait over long distance.
    Favre J; Crevoisier X; Jolles BM; Aminian K
    J Biomech; 2010 Aug; 43(11):2196-202. PubMed ID: 20483415
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heel and toe clearance estimation for gait analysis using wireless inertial sensors.
    Mariani B; Rochat S; Büla CJ; Aminian K
    IEEE Trans Biomed Eng; 2012 Nov; 59(11):3162-8. PubMed ID: 22955865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gait phase detection and discrimination between walking-jogging activities using hidden Markov models applied to foot motion data from a gyroscope.
    Mannini A; Sabatini AM
    Gait Posture; 2012 Sep; 36(4):657-61. PubMed ID: 22796244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A preliminary test of measurement of joint angles and stride length with wireless inertial sensors for wearable gait evaluation system.
    Watanabe T; Saito H; Koike E; Nitta K
    Comput Intell Neurosci; 2011; 2011():975193. PubMed ID: 21941531
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel adaptive, real-time algorithm to detect gait events from wearable sensors.
    Chia Bejarano N; Ambrosini E; Pedrocchi A; Ferrigno G; Monticone M; Ferrante S
    IEEE Trans Neural Syst Rehabil Eng; 2015 May; 23(3):413-22. PubMed ID: 25069118
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel approach to ambulatory assessment of human segmental orientation on a wearable sensor system.
    Liu K; Liu T; Shibata K; Inoue Y; Zheng R
    J Biomech; 2009 Dec; 42(16):2747-52. PubMed ID: 19748624
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wearable Sensor-Based Real-Time Gait Detection: A Systematic Review.
    Prasanth H; Caban M; Keller U; Courtine G; Ijspeert A; Vallery H; von Zitzewitz J
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33924403
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A symbol-based approach to gait analysis from acceleration signals: identification and detection of gait events and a new measure of gait symmetry.
    Sant'anna A; Wickström N
    IEEE Trans Inf Technol Biomed; 2010 Sep; 14(5):1180-7. PubMed ID: 20371410
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gait Phase Detection for Lower-Limb Exoskeletons using Foot Motion Data from a Single Inertial Measurement Unit in Hemiparetic Individuals.
    Sánchez Manchola MD; Pinto Bernal MJ; Munera M; Cifuentes CA
    Sensors (Basel); 2019 Jul; 19(13):. PubMed ID: 31284619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel wearable measurement system for ambulatory assessment of joint loading in the occupational setting.
    Faber G; Chang CC; Kingma I; Dennerlein JT
    Work; 2012; 41 Suppl 1():5527-8. PubMed ID: 22317604
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gait and Dynamic Balance Sensing Using Wearable Foot Sensors.
    Mohamed Refai MI; van Beijnum BF; Buurke JH; Veltink PH
    IEEE Trans Neural Syst Rehabil Eng; 2019 Feb; 27(2):218-227. PubMed ID: 30582548
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Validation of wearable visual feedback for retraining foot progression angle using inertial sensors and an augmented reality headset.
    Karatsidis A; Richards RE; Konrath JM; van den Noort JC; Schepers HM; Bellusci G; Harlaar J; Veltink PH
    J Neuroeng Rehabil; 2018 Aug; 15(1):78. PubMed ID: 30111337
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.