BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 23938322)

  • 1. Controlled modification of mono- and bilayer graphene in O₂, H₂ and CF₄ plasmas.
    Felten A; Eckmann A; Pireaux JJ; Krupke R; Casiraghi C
    Nanotechnology; 2013 Sep; 24(35):355705. PubMed ID: 23938322
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single- and double-sided chemical functionalization of bilayer graphene.
    Felten A; Flavel BS; Britnell L; Eckmann A; Louette P; Pireaux JJ; Hirtz M; Krupke R; Casiraghi C
    Small; 2013 Feb; 9(4):631-9. PubMed ID: 23166066
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thickness-dependent reversible hydrogenation of graphene layers.
    Luo Z; Yu T; Kim KJ; Ni Z; You Y; Lim S; Shen Z; Wang S; Lin J
    ACS Nano; 2009 Jul; 3(7):1781-8. PubMed ID: 19492823
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolution of physical and electronic structures of bilayer graphene upon chemical functionalization.
    Wang QH; Shih CJ; Paulus GL; Strano MS
    J Am Chem Soc; 2013 Dec; 135(50):18866-75. PubMed ID: 24266808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective chemical modification of graphene surfaces: distinction between single- and bilayer graphene.
    Koehler FM; Jacobsen A; Ensslin K; Stampfer C; Stark WJ
    Small; 2010 May; 6(10):1125-30. PubMed ID: 20449850
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface modification of chromatography adsorbents by low temperature low pressure plasma.
    Arpanaei A; Winther-Jensen B; Theodosiou E; Kingshott P; Hobley TJ; Thomas OR
    J Chromatogr A; 2010 Oct; 1217(44):6905-16. PubMed ID: 20869062
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlled hydrogenation of graphene sheets and nanoribbons.
    Jaiswal M; Lim CH; Bao Q; Toh CT; Loh KP; Ozyilmaz B
    ACS Nano; 2011 Feb; 5(2):888-96. PubMed ID: 21275382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of chlorine functionalization on high-mobility chemical vapor deposition grown graphene.
    Zhang X; Hsu A; Wang H; Song Y; Kong J; Dresselhaus MS; Palacios T
    ACS Nano; 2013 Aug; 7(8):7262-70. PubMed ID: 23844715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Etching processes of polytetrafluoroethylene surfaces exposed to He and He-O2 atmospheric post-discharges.
    Hubert J; Dufour T; Vandencasteele N; Desbief S; Lazzaroni R; Reniers F
    Langmuir; 2012 Jun; 28(25):9466-74. PubMed ID: 22607616
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoscale lithography on monolayer graphene using hydrogenation and oxidation.
    Byun IS; Yoon D; Choi JS; Hwang I; Lee DH; Lee MJ; Kawai T; Son YW; Jia Q; Cheong H; Park BH
    ACS Nano; 2011 Aug; 5(8):6417-24. PubMed ID: 21777004
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extreme monolayer-selectivity of hydrogen-plasma reactions with graphene.
    Diankov G; Neumann M; Goldhaber-Gordon D
    ACS Nano; 2013 Feb; 7(2):1324-32. PubMed ID: 23327591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reversible hydrogenation of graphene on ni(111)-synthesis of "graphone".
    Zhao W; Gebhardt J; Späth F; Gotterbarm K; Gleichweit C; Steinrück HP; Görling A; Papp C
    Chemistry; 2015 Feb; 21(8):3347-58. PubMed ID: 25639647
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thinning of multilayer graphene to monolayer graphene in a plasma environment.
    Hazra KS; Rafiee J; Rafiee MA; Mathur A; Roy SS; McLauhglin J; Koratkar N; Misra DS
    Nanotechnology; 2011 Jan; 22(2):025704. PubMed ID: 21139188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tunable bandgap energy of fluorinated nanocrystals for flash memory applications produced by low-damage plasma treatment.
    Huang CH; Lin CT; Wang JC; Chou C; Ye YR; Cheng BM; Lai CS
    Nanotechnology; 2012 Nov; 23(47):475201. PubMed ID: 23103683
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The use of sample positioning to control defect creation by oxygen plasma in isotopically labelled bilayer graphene membranes.
    Guerra VLP; Valeš V; Mikšátko J; Plšek J; Drogowska-Horná KA; Volochanskyi O; Kalbáč M
    RSC Adv; 2021 Mar; 11(17):10316-10322. PubMed ID: 35423537
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Layer-dependent fluorination and doping of graphene via plasma treatment.
    Chen M; Zhou H; Qiu C; Yang H; Yu F; Sun L
    Nanotechnology; 2012 Mar; 23(11):115706. PubMed ID: 22382072
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Covalent Reactions on Chemical Vapor Deposition Grown Graphene Studied by Surface-Enhanced Raman Spectroscopy.
    Kovaříček P; Bastl Z; Valeš V; Kalbac M
    Chemistry; 2016 Apr; 22(15):5404-8. PubMed ID: 26929075
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemistry under cover: tuning metal-graphene interaction by reactive intercalation.
    Sutter P; Sadowski JT; Sutter EA
    J Am Chem Soc; 2010 Jun; 132(23):8175-9. PubMed ID: 20527937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sodide and Organic Halides Effect Covalent Functionalization of Single-Layer and Bilayer Graphene.
    Biswal M; Zhang X; Schilter D; Lee TK; Hwang DY; Saxena M; Lee SH; Chen S; Kwak SK; Bielawski CW; Bacsa WS; Ruoff RS
    J Am Chem Soc; 2017 Mar; 139(11):4202-4210. PubMed ID: 28287258
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the addition of aryl radicals to graphene: the importance of nonbonded interactions.
    Denis PA
    Chemphyschem; 2013 Oct; 14(14):3271-7. PubMed ID: 23934897
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.