These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 23938422)

  • 1. Diffraction of a plane wave by an infinitely long circular cylinder or a sphere: solution from Mie theory.
    Shen J; Jia X
    Appl Opt; 2013 Aug; 52(23):5707-12. PubMed ID: 23938422
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acoustic backscattering enhancements resulting from the interaction of an obliquely incident plane wave with an infinite cylinder.
    Mitri FG
    Ultrasonics; 2010 Jun; 50(7):675-82. PubMed ID: 20181372
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diffraction theory of an anisotropic circular cylinder.
    Nevière M; Popov E; Boyer P
    J Opt Soc Am A Opt Image Sci Vis; 2006 Jul; 23(7):1731-40. PubMed ID: 16783438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical Diffraction in Close Proximity to Plane Apertures. I. Boundary-Value Solutions for Circular Apertures and Slits.
    Mielenz KD
    J Res Natl Inst Stand Technol; 2002; 107(4):355-62. PubMed ID: 27446736
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diffraction of short pulses with boundary diffraction wave theory.
    Horváth ZL; Bor Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Feb; 63(2 Pt 2):026601. PubMed ID: 11308595
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diffraction of light by an opaque sphere. 1: Description and properties of the diffraction pattern.
    Sommargren GE; Weaver HJ
    Appl Opt; 1990 Nov; 29(31):4646-57. PubMed ID: 20577447
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical Diffraction in Close Proximity to Plane Apertures. III. Modified, Self-Consistent Theory.
    Mielenz KD
    J Res Natl Inst Stand Technol; 2004; 109(5):457-64. PubMed ID: 27366625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Finely stratified cylinder model for radially inhomogeneous cylinders normally irradiated by electromagnetic plane waves.
    Kai L; D'lessio A
    Appl Opt; 1995 Aug; 34(24):5520-30. PubMed ID: 21060374
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scale transformation of Maxwell's equations and scattering by an elliptic cylinder.
    Ferrari LA
    J Opt Soc Am A Opt Image Sci Vis; 2011 Jun; 28(6):1285-90. PubMed ID: 21643414
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of diffracted fields with the extended theory of the boundary diffraction wave for impedance surfaces.
    Yalçın U
    Appl Opt; 2011 Jan; 50(3):296-302. PubMed ID: 21263725
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Light scattering from water droplets in the geometrical optics approximation.
    Glantschnig WJ; Chen SH
    Appl Opt; 1981 Jul; 20(14):2499-509. PubMed ID: 20332982
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical computation of the scattering matrix of an electromagnetic resonator.
    Guizal B; Felbacq D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Aug; 66(2 Pt 2):026602. PubMed ID: 12241306
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerically stable formulation of Mie theory for an emitter close to a sphere.
    Majic M; Le Ru EC
    Appl Opt; 2020 Feb; 59(5):1293-1300. PubMed ID: 32225380
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scattering of a gaussian beam by an infinite cylinder with arbitrary location and arbitrary orientation: numerical results.
    Mees L; Ren KF; Gréhan G; Gouesbet G
    Appl Opt; 1999 Mar; 38(9):1867-76. PubMed ID: 18305818
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Light scattering from a sliced target through use of the internal field of infinite cylinders: comparison between Mie theory and a sliced sphere.
    Cohen A; Haracz RD; Cohen LD
    Appl Opt; 1994 Mar; 33(9):1776-9. PubMed ID: 20885507
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical calculation of a converging vector electromagnetic wave diffracted by an aperture using Borgnis potentials. II. Application to the study of focal shift.
    Wang X; Fan Z; Tang T
    J Opt Soc Am A Opt Image Sci Vis; 2006 Jun; 23(6):1326-32. PubMed ID: 16715150
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy-density distribution inside large nonabsorbing spheres by using Mie theory and geometrical optics.
    Chowdhury DQ; Barber PW; Hill SC
    Appl Opt; 1992 Jun; 31(18):3518-23. PubMed ID: 20725320
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Geometrical-numerical approach to diffraction phenomena.
    Bosch S; Ferré-Borrull J
    Opt Lett; 2001 Feb; 26(4):181-3. PubMed ID: 18033540
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 5D-Tracking of a nanorod in a focused laser beam--a theoretical concept.
    Griesshammer M; Rohrbach A
    Opt Express; 2014 Mar; 22(5):6114-32. PubMed ID: 24663946
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exterior caustics produced in scattering of a diagonally incident plane wave by a circular cylinder: semiclassical scattering theory analysis.
    Lock JA; Adler CL; Hovenac EA
    J Opt Soc Am A Opt Image Sci Vis; 2000 Oct; 17(10):1846-56. PubMed ID: 11028533
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.