BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 23938467)

  • 1. Linking spermatid ribonucleic acid (RNA) binding protein and retrogene diversity to reproductive success.
    Chapman KM; Powell HM; Chaudhary J; Shelton JM; Richardson JA; Richardson TE; Hamra FK
    Mol Cell Proteomics; 2013 Nov; 12(11):3221-36. PubMed ID: 23938467
    [TBL] [Abstract][Full Text] [Related]  

  • 2. AKAP3 synthesis is mediated by RNA binding proteins and PKA signaling during mouse spermiogenesis.
    Xu K; Yang L; Zhao D; Wu Y; Qi H
    Biol Reprod; 2014 Jun; 90(6):119. PubMed ID: 24648398
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Position-dependent interactions of Y-box protein 2 (YBX2) with mRNA enable mRNA storage in round spermatids by repressing mRNA translation and blocking translation-dependent mRNA decay.
    Kleene KC
    Mol Reprod Dev; 2016 Mar; 83(3):190-207. PubMed ID: 26773323
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mouse EWSR1 is crucial for spermatid post-meiotic transcription and spermiogenesis.
    Tian H; Petkov PM
    Development; 2021 Jun; 148(11):. PubMed ID: 34100066
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Poly (A) binding protein is bound to both stored and polysomal mRNAs in the mammalian testis.
    Gu W; Kwon Y; Oko R; Hermo L; Hecht NB
    Mol Reprod Dev; 1995 Mar; 40(3):273-85. PubMed ID: 7772337
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RNA-binding protein Maca is crucial for gigantic male fertility factor gene expression, spermatogenesis, and male fertility, in Drosophila.
    Zhu L; Fukunaga R
    PLoS Genet; 2021 Jun; 17(6):e1009655. PubMed ID: 34181646
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RBM5 is a male germ cell splicing factor and is required for spermatid differentiation and male fertility.
    O'Bryan MK; Clark BJ; McLaughlin EA; D'Sylva RJ; O'Donnell L; Wilce JA; Sutherland J; O'Connor AE; Whittle B; Goodnow CC; Ormandy CJ; Jamsai D
    PLoS Genet; 2013; 9(7):e1003628. PubMed ID: 23935508
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RNA binding protein Musashi-2 regulates PIWIL1 and TBX1 in mouse spermatogenesis.
    Sutherland JM; Sobinoff AP; Fraser BA; Redgrove KA; Siddall NA; Koopman P; Hime GR; McLaughlin EA
    J Cell Physiol; 2018 Apr; 233(4):3262-3273. PubMed ID: 28884822
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous Purification of Round and Elongated Spermatids from Testis Tissue Using a FACS-Based DNA Ploidy Assay.
    Struijk RB; De Winter-Korver CM; van Daalen SKM; Hooibrink B; Repping S; van Pelt AMM
    Cytometry A; 2019 Mar; 95(3):309-313. PubMed ID: 30565839
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioinformatic identification of novel elements potentially involved in messenger RNA fate control during spermatogenesis.
    Idler RK; Hennig GW; Yan W
    Biol Reprod; 2012 Jun; 87(6):138. PubMed ID: 23053435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative proteomic analysis of round and elongated spermatids during spermiogenesis in mice.
    Li M; Li H; Yang H; Cheng R; Zheng P; Guo R
    Biomed Chromatogr; 2020 Apr; 34(4):e4799. PubMed ID: 31994209
    [TBL] [Abstract][Full Text] [Related]  

  • 12. LLPS of FXR1 drives spermiogenesis by activating translation of stored mRNAs.
    Kang JY; Wen Z; Pan D; Zhang Y; Li Q; Zhong A; Yu X; Wu YC; Chen Y; Zhang X; Kou PC; Geng J; Wang YY; Hua MM; Zong R; Li B; Shi HJ; Li D; Fu XD; Li J; Nelson DL; Guo X; Zhou Y; Gou LT; Huang Y; Liu MF
    Science; 2022 Aug; 377(6607):eabj6647. PubMed ID: 35951695
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Poly(A) shortening accompanies the activation of translation of five mRNAs during spermiogenesis in the mouse.
    Kleene KC
    Development; 1989 Jun; 106(2):367-73. PubMed ID: 2512111
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional analysis of male mouse haploid germ cells of various differentiation stages: early and late round spermatids are functionally equivalent in producing progeny.
    Ohta H; Sakaide Y; Wakayama T
    Biol Reprod; 2009 Mar; 80(3):511-7. PubMed ID: 19073998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Testis-specific miRNA-469 up-regulated in gonadotropin-regulated testicular RNA helicase (GRTH/DDX25)-null mice silences transition protein 2 and protamine 2 messages at sites within coding region: implications of its role in germ cell development.
    Dai L; Tsai-Morris CH; Sato H; Villar J; Kang JH; Zhang J; Dufau ML
    J Biol Chem; 2011 Dec; 286(52):44306-18. PubMed ID: 22086916
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sequence-independent assembly of spermatid mRNAs into messenger ribonucleoprotein particles.
    Schmidt EE; Hanson ES; Capecchi MR
    Mol Cell Biol; 1999 May; 19(5):3904-15. PubMed ID: 10207114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Haploid spermatids exhibit translationally repressed mRNAs.
    Steger K
    Anat Embryol (Berl); 2001 May; 203(5):323-34. PubMed ID: 11411307
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In Drosophila, don juan and don juan like encode proteins of the spermatid nucleus and the flagellum and both are regulated at the transcriptional level by the TAF II80 cannonball while translational repression is achieved by distinct elements.
    Hempel LU; Rathke C; Raja SJ; Renkawitz-Pohl R
    Dev Dyn; 2006 Apr; 235(4):1053-64. PubMed ID: 16477641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CLPH, a novel casein kinase 2-phosphorylated disordered protein, is specifically associated with postmeiotic germ cells in rat spermatogenesis.
    Calvel P; Kervarrec C; Lavigne R; Vallet-Erdtmann V; Guerrois M; Rolland AD; Chalmel F; Jégou B; Pineau C
    J Proteome Res; 2009 Jun; 8(6):2953-65. PubMed ID: 19271754
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Round spermatids show normal testis-specific H1t but reduced cAMP-responsive element modulator and transition protein 1 expression in men with round-spermatid maturation arrest.
    Steger K; Klonisch T; Gavenis K; Behr R; Schaller V; Drabent B; Doenecke D; Nieschlag E; Bergmann M; Weinbauer GF
    J Androl; 1999; 20(6):747-54. PubMed ID: 10591614
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.