These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 23938487)

  • 1. Spectral binning for mitigation of polarization mode dispersion artifacts in catheter-based optical frequency domain imaging.
    Villiger M; Zhang EZ; Nadkarni SK; Oh WY; Vakoc BJ; Bouma BE
    Opt Express; 2013 Jul; 21(14):16353-69. PubMed ID: 23938487
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Artifacts in polarization-sensitive optical coherence tomography caused by polarization mode dispersion.
    Villiger M; Zhang EZ; Nadkarni S; Oh WY; Bouma BE; Vakoc BJ
    Opt Lett; 2013 Mar; 38(6):923-5. PubMed ID: 23503261
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Corneal birefringence compensation for polarization sensitive optical coherence tomography of the human retina.
    Pircher M; Götzinger E; Baumann B; Hitzenberger CK
    J Biomed Opt; 2007; 12(4):041210. PubMed ID: 17867799
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dispersion compensation in Fourier domain optical coherence tomography.
    Al-Saeed TA; Shalaby MY; Khalil DA
    Appl Opt; 2014 Oct; 53(29):6643-53. PubMed ID: 25322365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Minimum-phase-function-based processing in frequency-domain optical coherence tomography systems.
    Ozcan A; Digonnet MJ; Kino GS
    J Opt Soc Am A Opt Image Sci Vis; 2006 Jul; 23(7):1669-77. PubMed ID: 16783430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generalized Jones matrix optical coherence tomography: performance and local birefringence imaging.
    Makita S; Yamanari M; Yasuno Y
    Opt Express; 2010 Jan; 18(2):854-76. PubMed ID: 20173907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Artifact removal in complex frequency domain optical coherence tomography with an iterative least-squares phase-shifting algorithm.
    Oh JT; Kim BM
    Appl Opt; 2006 Jun; 45(17):4157-64. PubMed ID: 16761059
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A practical approach to eliminate autocorrelation artefacts for volume-rate spectral domain optical coherence tomography.
    Wang RK; Ma Z
    Phys Med Biol; 2006 Jun; 51(12):3231-9. PubMed ID: 16757873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Retinal pigment epithelium segmentation by polarization sensitive optical coherence tomography.
    Götzinger E; Pircher M; Geitzenauer W; Ahlers C; Baumann B; Michels S; Schmidt-Erfurth U; Hitzenberger CK
    Opt Express; 2008 Oct; 16(21):16410-22. PubMed ID: 18852747
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Signal processing for sidelobe suppression in optical coherence tomography images.
    Wang Y; Liang Y; Xu K
    J Opt Soc Am A Opt Image Sci Vis; 2010 Mar; 27(3):415-21. PubMed ID: 20208930
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Frequency domain multiplexing for speckle reduction in optical coherence tomography.
    van Soest G; Villiger M; Regar E; Tearney GJ; Bouma BE; van der Steen AF
    J Biomed Opt; 2012 Jul; 17(7):076018. PubMed ID: 22894501
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optic axis determination accuracy for fiber-based polarization-sensitive optical coherence tomography.
    Park BH; Pierce MC; Cense B; de Boer JF
    Opt Lett; 2005 Oct; 30(19):2587-9. PubMed ID: 16208908
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Variables affecting polarization-sensitive optical coherence tomography imaging examined through the modeling of birefringent phantoms.
    Liu B; Harman M; Brezinski ME
    J Opt Soc Am A Opt Image Sci Vis; 2005 Feb; 22(2):262-71. PubMed ID: 15717555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Common approach for compensation of axial motion artifacts in swept-source OCT and dispersion in Fourier-domain OCT.
    Hillmann D; Bonin T; Lührs C; Franke G; Hagen-Eggert M; Koch P; Hüttmann G
    Opt Express; 2012 Mar; 20(6):6761-76. PubMed ID: 22418560
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthetic wavelength based phase unwrapping in spectral domain optical coherence tomography.
    Hendargo HC; Zhao M; Shepherd N; Izatt JA
    Opt Express; 2009 Mar; 17(7):5039-51. PubMed ID: 19333265
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fourier domain optical coherence tomography achieves full range complex imaging in vivo by introducing a carrier frequency during scanning.
    Wang RK
    Phys Med Biol; 2007 Oct; 52(19):5897-907. PubMed ID: 17881807
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of a mirror image and enhancement of the signal-to-noise ratio in Fourier-domain optical coherence tomography using an electro-optic phase modulator.
    Zhang J; Nelson JS; Chen Z
    Opt Lett; 2005 Jan; 30(2):147-9. PubMed ID: 15675695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical compensation of system polarization mode dispersion in polarization-sensitive optical coherence tomography.
    Zhang EZ; Oh WY; Villiger ML; Chen L; Bouma BE; Vakoc BJ
    Opt Express; 2013 Jan; 21(1):1163-80. PubMed ID: 23389009
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automated retinal shadow compensation of optical coherence tomography images.
    Fabritius T; Makita S; Hong Y; Myllylä R; Yasuno Y
    J Biomed Opt; 2009; 14(1):010503. PubMed ID: 19256685
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Autocalibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence determination.
    Mujat M; Park BH; Cense B; Chen TC; de Boer JF
    J Biomed Opt; 2007; 12(4):041205. PubMed ID: 17867794
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.