These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 23938840)

  • 1. Enhancement of Fano resonance in metal/dielectric/metal metamaterials at optical regime.
    Cao T; Zhang L
    Opt Express; 2013 Aug; 21(16):19228-39. PubMed ID: 23938840
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Double Fano resonances due to interplay of electric and magnetic plasmon modes in planar plasmonic structure with high sensing sensitivity.
    Wang J; Fan C; He J; Ding P; Liang E; Xue Q
    Opt Express; 2013 Jan; 21(2):2236-44. PubMed ID: 23389204
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Directional Fano resonance in a silicon nanosphere dimer.
    Yan J; Liu P; Lin Z; Wang H; Chen H; Wang C; Yang G
    ACS Nano; 2015 Mar; 9(3):2968-80. PubMed ID: 25683067
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tailoring the negative-refractive-index metamaterials composed of semiconductor-metal-semiconductor gold ring/disk cavity heptamers to support strong Fano resonances in the visible spectrum.
    Ahmadivand A; Pala N
    J Opt Soc Am A Opt Image Sci Vis; 2015 Feb; 32(2):204-12. PubMed ID: 26366591
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fast tuning of double Fano resonance using a phase-change metamaterial under low power intensity.
    Cao T; Wei C; Simpson RE; Zhang L; Cryan MJ
    Sci Rep; 2014 Mar; 4():4463. PubMed ID: 24662968
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple Fano resonances in single-layer nonconcentric core-shell nanostructures.
    Zhang J; Zayats A
    Opt Express; 2013 Apr; 21(7):8426-36. PubMed ID: 23571932
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strong Photoluminescence Enhancement in All-Dielectric Fano Metasurface with High Quality Factor.
    Yuan S; Qiu X; Cui C; Zhu L; Wang Y; Li Y; Song J; Huang Q; Xia J
    ACS Nano; 2017 Nov; 11(11):10704-10711. PubMed ID: 29023088
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Independently tunable double Fano resonances in asymmetric MIM waveguide structure.
    Qi J; Chen Z; Chen J; Li Y; Qiang W; Xu J; Sun Q
    Opt Express; 2014 Jun; 22(12):14688-95. PubMed ID: 24977564
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of asymmetric environment on the dark mode excitation in metamaterial analogue of electromagnetically-induced transparency.
    Dong ZG; Liu H; Xu MX; Li T; Wang SM; Cao JX; Zhu SN; Zhang X
    Opt Express; 2010 Oct; 18(21):22412-7. PubMed ID: 20941141
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strong dipole-quadrupole coupling and Fano resonance in H-like metallic nanostructures.
    Gonçalves MR; Melikyan A; Minassian H; Makaryan T; Marti O
    Opt Express; 2014 Oct; 22(20):24516-29. PubMed ID: 25322027
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Symmetry breaking and strong coupling in planar optical metamaterials.
    Aydin K; Pryce IM; Atwater HA
    Opt Express; 2010 Jun; 18(13):13407-17. PubMed ID: 20588471
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Origin of plasmonic Fano resonance in metal-hole/split-ring-resonator metamaterials disclosed by temporal coupled-mode theory.
    Deng Q; Lin H; Li ZY
    Opt Express; 2023 Sep; 31(20):32322-32334. PubMed ID: 37859038
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct excitation of dark plasmonic resonances under visible light at normal incidence.
    Gu Y; Qin F; Yang JK; Yeo SP; Qiu CW
    Nanoscale; 2014 Feb; 6(4):2106-11. PubMed ID: 24435813
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sharp Fano resonances in THz metamaterials.
    Singh R; Al-Naib IA; Koch M; Zhang W
    Opt Express; 2011 Mar; 19(7):6312-9. PubMed ID: 21451657
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quasi-TPPs/Fano resonance systems based on an MDM waveguide structure and its sensing application.
    Lu Y; Zhou Y; Cheng D; Li M; Xu Y; Xu J; Wang J
    Appl Opt; 2023 Nov; 62(33):8741-8748. PubMed ID: 38038019
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Double Narrow Fano Resonances via Diffraction Coupling of Magnetic Plasmon Resonances in Embedded 3D Metamaterials for High-Quality Sensing.
    Hu H; Lu X; Huang J; Chen K; Su J; Yan Z; Tang C; Cai P
    Nanomaterials (Basel); 2021 Dec; 11(12):. PubMed ID: 34947710
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasmon resonance hybridization in self-assembled copper nanoparticle clusters: efficient and precise localization of surface plasmon resonance (LSPR) sensing based on Fano resonances.
    Ahmadivand A; Pala N
    Appl Spectrosc; 2015; 69(2):277-86. PubMed ID: 25587712
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple Fano resonances excitation on all-dielectric nanohole arrays metasurfaces.
    Yang L; Yu S; Li H; Zhao T
    Opt Express; 2021 May; 29(10):14905-14916. PubMed ID: 33985202
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Light-tunable Fano resonance in metal-dielectric multilayer structures.
    Hayashi S; Nesterenko DV; Rahmouni A; Ishitobi H; Inouye Y; Kawata S; Sekkat Z
    Sci Rep; 2016 Sep; 6():33144. PubMed ID: 27623741
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Higher order Fano graphene metamaterials for nanoscale optical sensing.
    Guo X; Hu H; Zhu X; Yang X; Dai Q
    Nanoscale; 2017 Oct; 9(39):14998-15004. PubMed ID: 28956583
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.