These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 23939026)

  • 1. Generating steep, shear-free gradients of small molecules for cell culture.
    Kim T; Pinelis M; Maharbiz MM
    Biomed Microdevices; 2009 Feb; 11(1):65-73. PubMed ID: 18688724
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A programmable microfluidic cell array for combinatorial drug screening.
    Kim J; Taylor D; Agrawal N; Wang H; Kim H; Han A; Rege K; Jayaraman A
    Lab Chip; 2012 Apr; 12(10):1813-22. PubMed ID: 22456798
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A high-yield method for generating mass-transfer gradients in elastomer microfluidics using impermeable capillaries.
    Pinelis M; Shamban L; Jovic A; Maharbiz MM
    Biomed Microdevices; 2008 Dec; 10(6):807. PubMed ID: 18654854
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An easy to assemble microfluidic perfusion device with a magnetic clamp.
    Tkachenko E; Gutierrez E; Ginsberg MH; Groisman A
    Lab Chip; 2009 Apr; 9(8):1085-95. PubMed ID: 19350090
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a shear stress-free microfluidic gradient generator capable of quantitatively analyzing single-cell morphology.
    Barata D; Spennati G; Correia C; Ribeiro N; Harink B; van Blitterswijk C; Habibovic P; van Rijt S
    Biomed Microdevices; 2017 Sep; 19(4):81. PubMed ID: 28884359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A microfluidic oxygen sink to create a targeted cellular hypoxic microenvironment under ambient atmospheric conditions.
    Barmaki S; Jokinen V; Obermaier D; Blokhina D; Korhonen M; Ras RHA; Vuola J; Franssila S; Kankuri E
    Acta Biomater; 2018 Jun; 73():167-179. PubMed ID: 29649636
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of Culture Conditions on Cell Proliferation in a Microfluidic Channel.
    Sato K; Sato M; Yokoyama M; Hirai M; Furuta A
    Anal Sci; 2019 Jan; 35(1):49-56. PubMed ID: 30473567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Smart Cell Culture Monitoring and Drug Test Platform Using CMOS Capacitive Sensor Array.
    Nabovati G; Ghafar-Zadeh E; Letourneau A; Sawan M
    IEEE Trans Biomed Eng; 2019 Apr; 66(4):1094-1104. PubMed ID: 30139044
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous or Sequential Orthogonal Gradient Formation in a 3D Cell Culture Microfluidic Platform.
    Uzel SG; Amadi OC; Pearl TM; Lee RT; So PT; Kamm RD
    Small; 2016 Feb; 12(5):612-22. PubMed ID: 26619365
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-term microfluidic cultures of myotube microarrays for high-throughput focal stimulation.
    Tourovskaia A; Figueroa-Masot X; Folch A
    Nat Protoc; 2006; 1(3):1092-104. PubMed ID: 17406389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A microsystem for sensing and patterning oxidative microgradients during cell culture.
    Park J; Bansal T; Pinelis M; Maharbiz MM
    Lab Chip; 2006 May; 6(5):611-22. PubMed ID: 16652176
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generating nonlinear concentration gradients in microfluidic devices for cell studies.
    Selimović Š; Sim WY; Kim SB; Jang YH; Lee WG; Khabiry M; Bae H; Jambovane S; Hong JW; Khademhosseini A
    Anal Chem; 2011 Mar; 83(6):2020-8. PubMed ID: 21344866
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generating arbitrary chemical patterns for multipoint dosing of single cells.
    Hoppe TJ; Moorjani SG; Shear JB
    Anal Chem; 2013 Apr; 85(7):3746-51. PubMed ID: 23427919
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Concentration Gradients Tunable Generator with Adjustable Position of the Acoustically Oscillating Bubbles.
    Liu B; Ma Z; Yang J; Gao G; Liu H
    Micromachines (Basel); 2020 Aug; 11(9):. PubMed ID: 32878158
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Micro-Macro: Selective Integration of Microfeatures Inside Low-Cost Macromolds for PDMS Microfluidics Fabrication.
    Jiménez-Díaz E; Cano-Jorge M; Zamarrón-Hernández D; Cabriales L; Páez-Larios F; Cruz-Ramírez A; Vázquez-Victorio G; Fiordelisio T; Hautefeuille M
    Micromachines (Basel); 2019 Aug; 10(9):. PubMed ID: 31480301
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accelerated Biofluid Filling in Complex Microfluidic Networks by Vacuum-Pressure Accelerated Movement (V-PAM).
    Yu ZT; Cheung MK; Liu SX; Fu J
    Small; 2016 Sep; 12(33):4521-30. PubMed ID: 27409528
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing hypoxia-induced staurosporine resistance in prostate cancer cells with a microfluidic culture system.
    Khanal G; Hiemstra S; Pappas D
    Analyst; 2014 Jul; 139(13):3274-80. PubMed ID: 24479128
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generation of a chemical gradient across an array of 256 cell cultures in a single chip.
    Somaweera H; Ibragimov A; Pappas D
    Analyst; 2013 Oct; 138(19):5566-71. PubMed ID: 23939026
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.