These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 23939063)

  • 1. Regularization functional semi-automated incorporation of anatomical prior information in image-guided fluorescence tomography.
    Holt RW; Davis S; Pogue BW
    Opt Lett; 2013 Jul; 38(14):2407-9. PubMed ID: 23939063
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Data specific spatially varying regularization for multimodal fluorescence molecular tomography.
    Hyde D; Miller EL; Brooks DH; Ntziachristos V
    IEEE Trans Med Imaging; 2010 Feb; 29(2):365-74. PubMed ID: 19758858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct regularization from co-registered anatomical images for MRI-guided near-infrared spectral tomographic image reconstruction.
    Zhang L; Zhao Y; Jiang S; Pogue BW; Paulsen KD
    Biomed Opt Express; 2015 Sep; 6(9):3618-30. PubMed ID: 26417528
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anatomical image-guided fluorescence molecular tomography reconstruction using kernel method.
    Baikejiang R; Zhao Y; Fite BZ; Ferrara KW; Li C
    J Biomed Opt; 2017 May; 22(5):55001. PubMed ID: 28464120
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional reconstruction in free-space whole-body fluorescence tomography of mice using optically reconstructed surface and atlas anatomy.
    Zhang X; Badea CT; Johnson GA
    J Biomed Opt; 2009; 14(6):064010. PubMed ID: 20059248
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Incorporating anatomical side information into PET reconstruction using nonlocal regularization.
    Nguyen VG; Lee SJ
    IEEE Trans Image Process; 2013 Oct; 22(10):3961-73. PubMed ID: 23744678
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving thoracic four-dimensional cone-beam CT reconstruction with anatomical-adaptive image regularization (AAIR).
    Shieh CC; Kipritidis J; O'Brien RT; Cooper BJ; Kuncic Z; Keall PJ
    Phys Med Biol; 2015 Jan; 60(2):841-68. PubMed ID: 25565244
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Information loss and reconstruction in diffuse fluorescence tomography.
    Bonfert-Taylor P; Leblond F; Holt RW; Tichauer K; Pogue BW; Taylor EC
    J Opt Soc Am A Opt Image Sci Vis; 2012 Mar; 29(3):321-30. PubMed ID: 22472763
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An adaptive regularization parameter choice strategy for multispectral bioluminescence tomography.
    Feng J; Qin C; Jia K; Han D; Liu K; Zhu S; Yang X; Tian J
    Med Phys; 2011 Nov; 38(11):5933-44. PubMed ID: 22047358
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient L1 regularization-based reconstruction for fluorescent molecular tomography using restarted nonlinear conjugate gradient.
    Shi J; Zhang B; Liu F; Luo J; Bai J
    Opt Lett; 2013 Sep; 38(18):3696-9. PubMed ID: 24104850
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regularized image reconstruction with an anatomically adaptive prior for positron emission tomography.
    Chan C; Fulton R; Feng DD; Meikle S
    Phys Med Biol; 2009 Dec; 54(24):7379-400. PubMed ID: 19934490
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Inversion Scheme for Hybrid Fluorescence Molecular Tomography Using a Fuzzy Inference System.
    Mohajerani P; Ntziachristos V
    IEEE Trans Med Imaging; 2016 Feb; 35(2):381-90. PubMed ID: 26340771
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient reconstruction method for L1 regularization in fluorescence molecular tomography.
    Han D; Yang X; Liu K; Qin C; Zhang B; Ma X; Tian J
    Appl Opt; 2010 Dec; 49(36):6930-7. PubMed ID: 21173828
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Laplacian manifold regularization method for fluorescence molecular tomography.
    He X; Wang X; Yi H; Chen Y; Zhang X; Yu J; He X
    J Biomed Opt; 2017 Apr; 22(4):45009. PubMed ID: 28430853
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sparsity-driven reconstruction for FDOT with anatomical priors.
    Baritaux JC; Hassler K; Bucher M; Sanyal S; Unser M
    IEEE Trans Med Imaging; 2011 May; 30(5):1143-53. PubMed ID: 21507771
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reconstruction of fluorescence molecular tomography using a neighborhood regularization.
    Li M; Cao X; Liu F; Zhang B; Luo J; Bai J
    IEEE Trans Biomed Eng; 2012 Jul; 59(7):1799-803. PubMed ID: 22514202
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fast automatic segmentation of anatomical structures in x-ray computed tomography images to improve fluorescence molecular tomography reconstruction.
    Freyer M; Ale A; Schulz RB; Zientkowska M; Ntziachristos V; Englmeier KH
    J Biomed Opt; 2010; 15(3):036006. PubMed ID: 20615008
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison and assessment of semi-automatic image segmentation in computed tomography scans for image-guided kidney surgery.
    Glisson CL; Altamar HO; Herrell SD; Clark P; Galloway RL
    Med Phys; 2011 Nov; 38(11):6265-74. PubMed ID: 22047392
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An adaptive Tikhonov regularization method for fluorescence molecular tomography.
    Cao X; Zhang B; Wang X; Liu F; Liu K; Luo J; Bai J
    Med Biol Eng Comput; 2013 Aug; 51(8):849-58. PubMed ID: 23504309
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of three MRI-based anatomical priors for quantitative PET brain imaging.
    Vunckx K; Atre A; Baete K; Reilhac A; Deroose CM; Van Laere K; Nuyts J
    IEEE Trans Med Imaging; 2012 Mar; 31(3):599-612. PubMed ID: 22049363
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.