These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
235 related articles for article (PubMed ID: 23939089)
41. Acceleration of computation of φ-polynomials. Kaya I; Rolland J Opt Express; 2013 Nov; 21(23):29065-72. PubMed ID: 24514422 [TBL] [Abstract][Full Text] [Related]
42. Zernike aberration coefficients transformed to and from Fourier series coefficients for wavefront representation. Dai GM Opt Lett; 2006 Feb; 31(4):501-3. PubMed ID: 16496900 [TBL] [Abstract][Full Text] [Related]
44. Recurrence relations for orthogonal polynomials for PDEs in polar and cylindrical geometries. Richardson M; Lambers JV Springerplus; 2016; 5(1):1567. PubMed ID: 27652140 [TBL] [Abstract][Full Text] [Related]
45. Comparative assessment of freeform polynomials as optical surface descriptions. Kaya I; Thompson KP; Rolland JP Opt Express; 2012 Sep; 20(20):22683-91. PubMed ID: 23037418 [TBL] [Abstract][Full Text] [Related]
46. Sums of finite products of Chebyshev polynomials of the second kind and of Fibonacci polynomials. Kim T; Kim DS; Dolgy DV; Park JW J Inequal Appl; 2018; 2018(1):148. PubMed ID: 30008536 [TBL] [Abstract][Full Text] [Related]
47. Variational calculus approach to Zernike polynomials with application to FCS. Gligonov I; Enderlein J Biophys J; 2024 Aug; ():. PubMed ID: 39164968 [TBL] [Abstract][Full Text] [Related]
48. New formulae for the high-order derivatives of some Jacobi polynomials: an application to some high-order boundary value problems. Abd-Elhameed WM ScientificWorldJournal; 2014; 2014():456501. PubMed ID: 25386599 [TBL] [Abstract][Full Text] [Related]
49. Wavefront propagation based on the ray transfer matrix and numerical orthogonal Zernike gradient polynomials. Yin H; Gao Z; Yuan Q; Chen L; Bi J; Cao X; Huang J J Opt Soc Am A Opt Image Sci Vis; 2019 Jun; 36(6):1072-1078. PubMed ID: 31158139 [TBL] [Abstract][Full Text] [Related]
50. Integral-based parallel algorithm for the fast generation of the Zernike polynomials. Hsieh YH; Yu YT; Lai YH; Hsieh MX; Chen YF Opt Express; 2020 Jan; 28(2):936-947. PubMed ID: 32121813 [TBL] [Abstract][Full Text] [Related]
51. Applications of the elastic modes of a circular plate in wavefront correction of the adaptive optics and the active optics. Wang H; Zhang M; Gao J; Lan Y; Zuo Y; Zheng X Opt Express; 2021 Jan; 29(2):1109-1124. PubMed ID: 33726333 [TBL] [Abstract][Full Text] [Related]
53. Zernike olivary polynomials for applications with olivary pupils. Zheng Y; Sun S; Li Y Appl Opt; 2016 Apr; 55(12):3116-25. PubMed ID: 27140076 [TBL] [Abstract][Full Text] [Related]
54. Recurrence relations for the Cartesian derivatives of the Zernike polynomials. Stephenson PC J Opt Soc Am A Opt Image Sci Vis; 2014 Apr; 31(4):708-15. PubMed ID: 24695132 [TBL] [Abstract][Full Text] [Related]
55. Resolving capacity of the circular Zernike polynomials. Svechnikov MV; Chkhalo NI; Toropov MN; Salashchenko NN Opt Express; 2015 Jun; 23(11):14677-94. PubMed ID: 26072827 [TBL] [Abstract][Full Text] [Related]
56. The Chebyshev-polynomials-based unified model neural networks for function approximation. Lee TT; Jeng JT IEEE Trans Syst Man Cybern B Cybern; 1998; 28(6):925-35. PubMed ID: 18256014 [TBL] [Abstract][Full Text] [Related]
57. Decoupling control algorithm based on numerical orthogonal polynomials for a woofer-tweeter adaptive optics system. Kong L; Cheng T; Yang P; Wang S; Yang C; Zhao M Opt Express; 2021 Jul; 29(14):22331-22344. PubMed ID: 34266000 [TBL] [Abstract][Full Text] [Related]
58. Zernike annular polynomials and optical aberrations of systems with annular pupils. Mahajan VN Appl Opt; 1994 Dec; 33(34):8125-7. PubMed ID: 20963042 [TBL] [Abstract][Full Text] [Related]