These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 239391)

  • 1. Interaction of Mg2+ ions with nucleoside triphosphates by phosphorus magnetic resonance spectroscopy.
    Son TD; Roux M; Ellenberger M
    Nucleic Acids Res; 1975 Jul; 2(7):1101-10. PubMed ID: 239391
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A 31P-NMR study of the interaction of Mg2+ ions with nucleoside diphosphates.
    Tran-Dinh S; Neumann JM
    Nucleic Acids Res; 1977 Feb; 4(2):397-403. PubMed ID: 14328
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A phosphorus-magnetic-resonance study of the interaction of Mg2+ with adenyl-5'-yl imidodiphosphate. Binding sites of Mg2+ ion on the phosphate chain.
    Tran-Dinh S; Roux M
    Eur J Biochem; 1977 Jun; 76(1):245-9. PubMed ID: 18351
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of phosphodiesterases from Bacillus subtilis by nucleoside triphosphates.
    Senesi S; Falcone G; Ipata PL; Felicioli RA
    Biochemistry; 1974 Nov; 13(24):5008-11. PubMed ID: 4373047
    [No Abstract]   [Full Text] [Related]  

  • 5. Initiation characteristics for the synthesis of five T4 phage-specific messenger RNAs in vitro.
    Natale PJ; Buchanan JM
    Proc Natl Acad Sci U S A; 1974 Feb; 71(2):422-6. PubMed ID: 4360943
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nucleoside triphosphates inhibit ADP, collagen, and epinephrine-induced platelet aggregation: role of P2Y₁ and P2Y₁₂ receptors.
    Aslam M; Sedding D; Koshty A; Santoso S; Schulz R; Hamm C; Gündüz D
    Thromb Res; 2013 Nov; 132(5):548-57. PubMed ID: 24071464
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of the metal-ion-promoted dephosphorylation of the 5'-triphosphates of adenosine, inosine, guanosine and cytidine by Mn2+, Ni2+ and Zn2+ in binary and ternary complexes.
    Amsler PE; Sigel H
    Eur J Biochem; 1976 Apr; 63(2):569-81. PubMed ID: 4327
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stabilities and isomeric equilibria in solutions of monomeric metal-ion complexes of guanosine 5'-triphosphate (GTP4-) and inosine 5'-triphosphate (ITP4-) in comparison with those of adenosine 5'-triphosphate (ATP4-).
    Sigel H; Bianchi EM; Corfù NA; Kinjo Y; Tribolet R; Martin RB
    Chemistry; 2001 Sep; 7(17):3729-37. PubMed ID: 11575773
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The interaction of histone IV with nucleoside triphosphates.
    Wickett R; Isenberg I
    Proc Natl Acad Sci U S A; 1972 Sep; 69(9):2687-90. PubMed ID: 4506790
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continuous electron spin resonance detection of biochemical reactions of nucleoside triphosphates.
    Backer JM; Slepnjova AI
    Anal Biochem; 1977 Feb; 77(2):413-8. PubMed ID: 190917
    [No Abstract]   [Full Text] [Related]  

  • 11. Levels of the ribonucleoside triphosphates and rate of RNA synthesis in Neurospora crassa.
    Costantini MG; Zippel R; Sturani E
    Biochim Biophys Acta; 1977 Jun; 476(4):272-8. PubMed ID: 141945
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Studies on the allosteric modification of nucleoside diphosphatase activity by magnesium nucleoside triphosphates and inosine diphosphate.
    Schramm VL; Morrison JF
    Biochemistry; 1971 Jun; 10(12):2272-7. PubMed ID: 4329873
    [No Abstract]   [Full Text] [Related]  

  • 13. Titanium(IV) targets phosphoesters on nucleotides: implications for the mechanism of action of the anticancer drug titanocene dichloride.
    Guo M; Guo Z; Sadler PJ
    J Biol Inorg Chem; 2001 Sep; 6(7):698-707. PubMed ID: 11681703
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of various nucleoside triphosphates on the catalytic activity of chicken liver fructose diphosphatases.
    Han PF; Harris W
    Poult Sci; 1973 Nov; 52(6):2364-6. PubMed ID: 4363540
    [No Abstract]   [Full Text] [Related]  

  • 15. Chemical synthesis of nucleoside-gamma-[32P]triphosphates of high specific activity.
    Janecka A; Panusz H; Pankowski J; Koziołkiewicz W
    Prep Biochem; 1980; 10(1):27-35. PubMed ID: 7375446
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous peptide and oligonucleotide formation in mixtures of amino acid, nucleoside triphosphate, imidazole, and magnesium ion.
    Weber AL; Caroon JM; Warden JT; Lemmon RM; Calvin M
    Biosystems; 1977 Apr; 8(4):277-86. PubMed ID: 18230
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A nucleoside triphosphate-dependent deoxyribonucleic acid-breakdown system in Mycobacterium smegmatis, and the effect of iron limitation on the activity of this system.
    Winder FG; Coughlan MP
    Biochem J; 1969 Mar; 111(5):679-87. PubMed ID: 5783468
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A rapid and simple procedure for preparation of - 32 P-labeled nucleoside triphosphates.
    Keenan RW; Zishka MK; Nishimura JS
    Anal Biochem; 1972 Jun; 47(2):601-8. PubMed ID: 5036467
    [No Abstract]   [Full Text] [Related]  

  • 19. Error in the calibration of the MgATP chemical-shift limit: effects on the determination of free magnesium by 31P NMR spectroscopy.
    Mosher TJ; Williams GD; Doumen C; LaNoue KF; Smith MB
    Magn Reson Med; 1992 Mar; 24(1):163-9. PubMed ID: 1556922
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of nucleoside triphosphate and magnesium ion concentration on the stability and function of rat liver polysomes in vitro.
    Pronczuk AW; Baliga BS; Munro HN
    Biochem J; 1968 Dec; 110(4):783-8. PubMed ID: 5704825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.