These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
269 related articles for article (PubMed ID: 23939289)
1. Interference with the mitochondrial bioenergetics fuels reprogramming to pluripotency via facilitation of the glycolytic transition. Son MJ; Jeong BR; Kwon Y; Cho YS Int J Biochem Cell Biol; 2013 Nov; 45(11):2512-8. PubMed ID: 23939289 [TBL] [Abstract][Full Text] [Related]
5. Unveiling the critical role of REX1 in the regulation of human stem cell pluripotency. Son MY; Choi H; Han YM; Cho YS Stem Cells; 2013 Nov; 31(11):2374-87. PubMed ID: 23939908 [TBL] [Abstract][Full Text] [Related]
6. Mitofusins deficiency elicits mitochondrial metabolic reprogramming to pluripotency. Son MJ; Kwon Y; Son MY; Seol B; Choi HS; Ryu SW; Choi C; Cho YS Cell Death Differ; 2015 Dec; 22(12):1957-69. PubMed ID: 25882047 [TBL] [Abstract][Full Text] [Related]
7. The senescence-related mitochondrial/oxidative stress pathway is repressed in human induced pluripotent stem cells. Prigione A; Fauler B; Lurz R; Lehrach H; Adjaye J Stem Cells; 2010 Apr; 28(4):721-33. PubMed ID: 20201066 [TBL] [Abstract][Full Text] [Related]
8. Mitochondrial function in pluripotent stem cells and cellular reprogramming. Bukowiecki R; Adjaye J; Prigione A Gerontology; 2014; 60(2):174-82. PubMed ID: 24281332 [TBL] [Abstract][Full Text] [Related]
9. Human induced pluripotent stem cells harbor homoplasmic and heteroplasmic mitochondrial DNA mutations while maintaining human embryonic stem cell-like metabolic reprogramming. Prigione A; Lichtner B; Kuhl H; Struys EA; Wamelink M; Lehrach H; Ralser M; Timmermann B; Adjaye J Stem Cells; 2011 Sep; 29(9):1338-48. PubMed ID: 21732474 [TBL] [Abstract][Full Text] [Related]
13. A Role for KLF4 in Promoting the Metabolic Shift via TCL1 during Induced Pluripotent Stem Cell Generation. Nishimura K; Aizawa S; Nugroho FL; Shiomitsu E; Tran YTH; Bui PL; Borisova E; Sakuragi Y; Takada H; Kurisaki A; Hayashi Y; Fukuda A; Nakanishi M; Hisatake K Stem Cell Reports; 2017 Mar; 8(3):787-801. PubMed ID: 28262547 [TBL] [Abstract][Full Text] [Related]
14. Mechanisms of the Metabolic Shift during Somatic Cell Reprogramming. Nishimura K; Fukuda A; Hisatake K Int J Mol Sci; 2019 May; 20(9):. PubMed ID: 31067778 [TBL] [Abstract][Full Text] [Related]
15. Concise review: non-cell autonomous reprogramming: a nucleic acid-free approach to induction of pluripotency. Parameswaran S; Balasubramanian S; Rao MS; Ahmad I Stem Cells; 2011 Jul; 29(7):1013-20. PubMed ID: 21544901 [TBL] [Abstract][Full Text] [Related]
16. Mitochondrial and glycolytic remodeling during nascent neural differentiation of human pluripotent stem cells. Lees JG; Gardner DK; Harvey AJ Development; 2018 Oct; 145(20):. PubMed ID: 30266828 [TBL] [Abstract][Full Text] [Related]
17. Connecting Mitochondria, Metabolism, and Stem Cell Fate. Wanet A; Arnould T; Najimi M; Renard P Stem Cells Dev; 2015 Sep; 24(17):1957-71. PubMed ID: 26134242 [TBL] [Abstract][Full Text] [Related]
18. Metabolic Reprogramming, Autophagy, and Reactive Oxygen Species Are Necessary for Primordial Germ Cell Reprogramming into Pluripotency. Sainz de la Maza D; Moratilla A; Aparicio V; Lorca C; Alcaina Y; Martín D; De Miguel MP Oxid Med Cell Longev; 2017; 2017():4745252. PubMed ID: 28757909 [TBL] [Abstract][Full Text] [Related]
19. Pluripotent stem cell energy metabolism: an update. Teslaa T; Teitell MA EMBO J; 2015 Jan; 34(2):138-53. PubMed ID: 25476451 [TBL] [Abstract][Full Text] [Related]
20. MiR-31/SDHA Axis Regulates Reprogramming Efficiency through Mitochondrial Metabolism. Lee MR; Mantel C; Lee SA; Moon SH; Broxmeyer HE Stem Cell Reports; 2016 Jul; 7(1):1-10. PubMed ID: 27346679 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]