These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 23939302)

  • 21. Facile Two-Step Strategy for the Construction of a Mechanically Stable Three-Dimensional Superhydrophobic Structure for Continuous Oil-Water Separation.
    Wang Y; Zhu Y; Yang C; Liu J; Jiang W; Liang B
    ACS Appl Mater Interfaces; 2018 Jul; 10(28):24149-24156. PubMed ID: 29956538
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Robust diamond meshes with unique wettability properties.
    Yang Y; Li H; Cheng S; Zou G; Wang C; Lin Q
    Chem Commun (Camb); 2014 Mar; 50(22):2900-3. PubMed ID: 24493380
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Robust and Cost-Effective Superhydrophobic Graphene Foam for Efficient Oil and Organic Solvent Recovery.
    Zhu H; Chen D; An W; Li N; Xu Q; Li H; He J; Lu J
    Small; 2015 Oct; 11(39):5222-9. PubMed ID: 26265103
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Macroporous monoliths with pH-induced switchable wettability for recyclable oil separation and recovery.
    Guo Z; Gu H; Chen Q; He Z; Xu W; Zhang J; Liu Y; Xiong L; Zheng L; Feng Y
    J Colloid Interface Sci; 2019 Jan; 534():183-194. PubMed ID: 30223199
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Low Drag Porous Ship with Superhydrophobic and Superoleophilic Surface for Oil Spills Cleanup.
    Wang G; Zeng Z; Wang H; Zhang L; Sun X; He Y; Li L; Wu X; Ren T; Xue Q
    ACS Appl Mater Interfaces; 2015 Dec; 7(47):26184-94. PubMed ID: 26562211
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A versatile approach to produce superhydrophobic materials used for oil-water separation.
    Zhu X; Zhang Z; Ge B; Men X; Zhou X; Xue Q
    J Colloid Interface Sci; 2014 Oct; 432():105-8. PubMed ID: 25086383
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dual Superlyophobic Copper Foam with Good Durability and Recyclability for High Flux, High Efficiency, and Continuous Oil-Water Separation.
    Zhou W; Li S; Liu Y; Xu Z; Wei S; Wang G; Lian J; Jiang Q
    ACS Appl Mater Interfaces; 2018 Mar; 10(11):9841-9848. PubMed ID: 29493207
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Green Approach to the Fabrication of Superhydrophobic Mesh Surface for Oil/Water Separation.
    Wang F; Lei S; Xu Y; Ou J
    Chemphyschem; 2015 Jul; 16(10):2237-43. PubMed ID: 26017675
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Micro/nanoscale hierarchical structured ZnO mesh film for separation of water and oil.
    Tian D; Zhang X; Wang X; Zhai J; Jiang L
    Phys Chem Chem Phys; 2011 Aug; 13(32):14606-10. PubMed ID: 21769332
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fast formation of superhydrophobic octadecylphosphonic acid (ODPA) coating for self-cleaning and oil/water separation.
    Dai C; Liu N; Cao Y; Chen Y; Lu F; Feng L
    Soft Matter; 2014 Oct; 10(40):8116-21. PubMed ID: 25177922
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rapid formation of superhydrophobic surfaces with fast response wettability transition.
    Zhu X; Zhang Z; Men X; Yang J; Xu X
    ACS Appl Mater Interfaces; 2010 Dec; 2(12):3636-41. PubMed ID: 21073178
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A facile method to fabricate functionally integrated devices for oil/water separation.
    An Q; Zhang Y; Lv K; Luan X; Zhang Q; Shi F
    Nanoscale; 2015 Mar; 7(10):4553-8. PubMed ID: 25685993
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Surface roughness induced superhydrophobicity of graphene foam for oil-water separation.
    Yang S; Chen L; Wang C; Rana M; Ma PC
    J Colloid Interface Sci; 2017 Dec; 508():254-262. PubMed ID: 28843104
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fast and selective removal of oils from water surface via highly hydrophobic core-shell Fe2O3@C nanoparticles under magnetic field.
    Zhu Q; Tao F; Pan Q
    ACS Appl Mater Interfaces; 2010 Nov; 2(11):3141-6. PubMed ID: 20942429
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanical- and oil-durable superhydrophobic polyester materials for selective oil absorption and oil/water separation.
    Wu L; Zhang J; Li B; Wang A
    J Colloid Interface Sci; 2014 Jan; 413():112-7. PubMed ID: 24183438
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fabrication of highly antireflective silicon surfaces with superhydrophobicity.
    Cao M; Song X; Zhai J; Wang J; Wang Y
    J Phys Chem B; 2006 Jul; 110(26):13072-5. PubMed ID: 16805616
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Superhydrophobic activated carbon-coated sponges for separation and absorption.
    Sun H; Li A; Zhu Z; Liang W; Zhao X; La P; Deng W
    ChemSusChem; 2013 Jun; 6(6):1057-62. PubMed ID: 23650204
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mussel-inspired direct immobilization of nanoparticles and application for oil-water separation.
    Zhu Q; Pan Q
    ACS Nano; 2014 Feb; 8(2):1402-9. PubMed ID: 24404889
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Controllable water permeation on a poly(N-isopropylacrylamide)-modified nanostructured copper mesh film.
    Song W; Xia F; Bai Y; Liu F; Sun T; Jiang L
    Langmuir; 2007 Jan; 23(1):327-31. PubMed ID: 17190522
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rapid control of switchable oil wettability and adhesion on the copper substrate.
    Zhu X; Zhang Z; Xu X; Men X; Yang J; Zhou X; Xue Q
    Langmuir; 2011 Dec; 27(23):14508-13. PubMed ID: 22032612
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.